Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1101–o1102. doi: 10.1107/S1600536811013018

3-(4-Chloro­phen­oxy)-1-(4-meth­oxy­phen­yl)-4-(4-nitro­phen­yl)azetidin-2-one

Ray J Butcher a, Mehmet Akkurt b,*, Aliasghar Jarrahpour c, Seid Ali Torabi Badrabady c
PMCID: PMC3089293  PMID: 21754420

Abstract

In the title compound, C22H17ClN2O5, the nearly planar four-membered β-lactam ring [maximum deviation of 0.016 (1) for the N atom] makes dihedral angles of 53.07 (9), 73.19 (9) and 6.61 (9)° with the chloro-, nitro- and meth­oxy­benzene rings, respectively. The crystal structure is stabilized by C—H⋯O hydrogen bonds, a weak C—H⋯π inter­action and a π–π stacking inter­action [centroid–centroid distance = 3.6513 (8) Å] between the meth­oxy­benzene rings of inversion-related mol­ecules.

Related literature

For general background to β-lactams, see: Banik et al. (2004); Garud et al. (2009); Jarrahpor & Khalili (2007); Jarrahpour & Zarei (2006, 2010). For some of our previous reports of the structures of β-lactams, see: Akkurt et al. (2008a ,b , 2011a ,b ); Baktır et al. (2009); Yalçın et al. (2009); Çelik et al. (2009).graphic file with name e-67-o1101-scheme1.jpg

Experimental

Crystal data

  • C22H17ClN2O5

  • M r = 424.83

  • Monoclinic, Inline graphic

  • a = 6.0863 (2) Å

  • b = 20.0855 (7) Å

  • c = 17.3819 (7) Å

  • β = 97.419 (4)°

  • V = 2107.09 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 123 K

  • 0.49 × 0.17 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.901, T max = 0.970

  • 20727 measured reflections

  • 10522 independent reflections

  • 7301 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.190

  • S = 1.08

  • 10522 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013018/su2266sup1.cif

e-67-o1101-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013018/su2266Isup2.hkl

e-67-o1101-Isup2.hkl (514.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C16–C21 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 1.00 2.45 3.287 (2) 141
C3—H3A⋯O1ii 1.00 2.29 3.2439 (17) 159
C20—H20A⋯O1iii 0.95 2.50 3.3086 (18) 144
C21—H21A⋯O1 0.95 2.52 3.1397 (18) 123
C6—H6ACg4iv 0.95 2.71 3.4145 (17) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. The dihedral angles between the mean planes of the rings in the title mol­ecule (°).

  Ring 2 Ring 3 Ring 4
Ring 1 53.07 (9) 73.19 (9) 6.61 (9)
Ring 2   64.42 (7) 46.85 (7)
Ring 3     79.45 (7)

Ring 1 is the N1/C1–C3 β-lactam ring, ring 2 is the C4–C9 benzene ring, ring 3 is the C10–C15 benzene ring and ring 4 is C16–C21 benzene ring.

Acknowledgments

AJ and SATB thank the Shiraz University Research Council for financial support (grant No. 89-GR–SC-23).

supplementary crystallographic information

Comment

The β-lactam antibiotics consists of a strained, four-membered, heterocyclic ring, known as the β-lactam ring (Garud et al., 2009). The most literal definition of a β-lactam antibiotics are the monocyclic β-lactams that do not contain another ring fused to the β-lactam one (Jarrahpour & Zarei, 2006). The discovery of the monocyclic β-lactams suggesting that the biological activity of β-lactams was strictly correlated to the presence of a suitably functionalized β-lactam ring (Jarrahpour & Zarei, 2010; Banik et al., 2004). The β-lactam ring systems show many interesting biological properties, such as cholesterol absorption inhibitors, human cytomegalovirus (HCMV) protease inhibitors, thrombin inhibitors, antihyperglycemic, anti-tumour, anti-HIV, human leukocyte elastase (HLE), potential antimalarials, anti-influenza virus, and serine-dependent enzyme inhibitors (Jarrahpor & Khalili, 2007).

As an extension of our work (Baktır et al., 2009; Çelik et al., 2009; Yalçın et al., 2009; Akkurt et al., 2008a,b; Akkurt et al., 2011a,b) on structural characterization of the β-lactam compounds, we herein report on the X-ray crystal structure of the title compound.

In the title molecule, Fig. 1, the β-lactam ring (N1/C1–C3) is nearly planar, with maximum deviations of -0.016 (1) for N1 and 0.015 (1) Å for C1. The C1—N1—C16—C17, N1–C3—C10—C11, O1—C1—C2—O2, C3—C2—O2—C4 and C2—O2—C4—C5 torsion angles are -172.79 (14), -159.77 (12), -60.7 (2), 92.79 (14) and -168.40 (12) °, respectively. The dihedral angles between the ring planes are listed in Table 2.

In the crystal molecules are linked by intermolecular C—H···O hydrogen-bond interactions and a weak C—H···π interaction (Table 1 and Fig. 2). Furthermore, there is a π-π stacking interaction [Cg4···Cg4i = 3.6513 (8) Å, where Cg4 is a centroid of the C16–C21 benzene ring; symmetry code: (i) = 1 - x, 1 - y, 1 - z] between the benzene rings attached to the methoxy group of molecules related by an inversion center.

Experimental

A solution of N-(4-nitrobenzylidene)-4-methoxybenzenamine (1.00 mmol) was stirred with 4-chlorophenoxy acetic acid (1.50 mmol), p-toluenesulfonyl chloride (1.50 mmol) and triethylamine (2.5 mmol) in dry CH2Cl2 at room temperature over night. Then it was washed with HCl 1 N (20 ml), saturated NaHCO3 (20 ml), brine (20 ml), dried over Na2SO4 and the solvent was evaporated under reduced pressure to give the crude product which was then purified by column chromatography over silica gel (7:3 hexane-EtOAc). (Yield 78%; mp: 415–417 K). Elemental analysis: Calc. for C22H17ClN2O5: C, 62.20; H, 4.03; N, 6.59%; Found: C, 62.15; H, 4.07; N, 6.65%.

Refinement

All H atoms were placed in their calculated positions and refined using a riding model: C—H = 0.98, 1.00 and 0.95 Å, for methyl, methine, and aromatic H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for the methyl H-atoms and 1.2 for all other H-atoms. In the crystal structure there is an 89 Å3 void, but the low electron density (0.67 e.Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing and C-H···O hydrogen-bond interactions (dashed lines) of the title compound viewed down the a axis.

Crystal data

C22H17ClN2O5 F(000) = 880
Mr = 424.83 Dx = 1.339 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6350 reflections
a = 6.0863 (2) Å θ = 5.1–37.5°
b = 20.0855 (7) Å µ = 0.22 mm1
c = 17.3819 (7) Å T = 123 K
β = 97.419 (4)° Needle, colourless
V = 2107.09 (13) Å3 0.49 × 0.17 × 0.14 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 10522 independent reflections
Radiation source: Enhance (Mo) X-ray Source 7301 reflections with I > 2σ(I)
graphite Rint = 0.041
Detector resolution: 10.5081 pixels mm-1 θmax = 37.6°, θmin = 5.2°
ω scans h = −10→6
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −34→29
Tmin = 0.901, Tmax = 0.970 l = −29→27
20727 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.3529P] where P = (Fo2 + 2Fc2)/3
10522 reflections (Δ/σ)max = 0.001
272 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Experimental. Spectroscopic data for the title c ompound: IR (KBr, cm-1): 1744.5 (CO, β-lactam). 1H-NMR (250 MHz, CDCl3) δ (p.p.m.): 3.67 (OMe, s, 3H), 5.88 (H-4, d, 1H, J = 5.0), 5.95 (H-3, d, 1H, J = 5.0), 6.78–8.14 (aromatic protons as a doublet at 6.80, a doublet at 6.90, a doublet at 7.15, a doublet at 7.23, a doublet at 7.61, a doublet at 8.12, 12H). 13C-NMR (62.9 MHz, CDCl3) δ (p.p.m.): 55.6 (OMe), 60.3 (C-4), 81.3 (C-3), 115.1–156.6 (aromatic carbons), 161.8 (CO, β-lactam).
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.37871 (8) 1.01738 (2) 0.70470 (3) 0.0430 (1)
O1 0.95577 (17) 0.64289 (6) 0.55371 (7) 0.0251 (3)
O2 0.74828 (16) 0.75343 (5) 0.65041 (6) 0.0193 (2)
O3 0.5101 (3) 0.65839 (9) 0.99331 (8) 0.0549 (6)
O4 0.1603 (3) 0.67723 (9) 0.95892 (8) 0.0507 (5)
O5 0.54345 (18) 0.33051 (5) 0.59384 (7) 0.0258 (3)
N1 0.62898 (18) 0.60647 (6) 0.60078 (7) 0.0175 (3)
N2 0.3499 (3) 0.66717 (8) 0.94411 (8) 0.0341 (4)
C1 0.7794 (2) 0.65032 (7) 0.57845 (8) 0.0184 (3)
C2 0.6374 (2) 0.71011 (7) 0.59484 (8) 0.0176 (3)
C3 0.4744 (2) 0.65738 (7) 0.62320 (8) 0.0170 (3)
C4 0.6499 (2) 0.81410 (7) 0.66070 (8) 0.0175 (3)
C5 0.7820 (2) 0.86043 (7) 0.70490 (8) 0.0222 (3)
C6 0.6991 (3) 0.92302 (8) 0.71847 (9) 0.0258 (4)
C7 0.4823 (3) 0.93834 (8) 0.68819 (10) 0.0266 (4)
C8 0.3492 (2) 0.89266 (8) 0.64457 (10) 0.0263 (4)
C9 0.4332 (2) 0.82983 (7) 0.63096 (9) 0.0224 (3)
C10 0.4462 (2) 0.65906 (7) 0.70792 (7) 0.0165 (3)
C11 0.2574 (2) 0.68941 (7) 0.72993 (8) 0.0202 (3)
C12 0.2254 (2) 0.69232 (8) 0.80772 (8) 0.0229 (4)
C13 0.3852 (3) 0.66479 (7) 0.86185 (8) 0.0223 (3)
C14 0.5750 (3) 0.63433 (8) 0.84242 (8) 0.0232 (3)
C15 0.6038 (2) 0.63173 (7) 0.76442 (8) 0.0202 (3)
C16 0.6116 (2) 0.53648 (7) 0.59893 (7) 0.0166 (3)
C17 0.4208 (2) 0.50585 (7) 0.61868 (8) 0.0196 (3)
C18 0.4028 (2) 0.43687 (7) 0.61633 (8) 0.0207 (3)
C19 0.5751 (2) 0.39828 (7) 0.59468 (8) 0.0193 (3)
C20 0.7656 (2) 0.42899 (7) 0.57502 (8) 0.0203 (3)
C21 0.7837 (2) 0.49782 (7) 0.57686 (8) 0.0194 (3)
C22 0.7363 (3) 0.29027 (8) 0.59211 (10) 0.0280 (4)
H2A 0.57270 0.73370 0.54650 0.0210*
H3A 0.32890 0.65630 0.58920 0.0200*
H5A 0.92920 0.84910 0.72580 0.0270*
H6A 0.78900 0.95500 0.74800 0.0310*
H8A 0.20170 0.90400 0.62410 0.0320*
H9A 0.34280 0.79790 0.60150 0.0270*
H11A 0.15010 0.70820 0.69150 0.0240*
H12A 0.09710 0.71270 0.82310 0.0270*
H14A 0.68190 0.61580 0.88120 0.0280*
H15A 0.73230 0.61110 0.74950 0.0240*
H17A 0.30350 0.53210 0.63370 0.0230*
H18A 0.27280 0.41600 0.62950 0.0250*
H20A 0.88320 0.40270 0.56030 0.0240*
H21A 0.91320 0.51870 0.56310 0.0230*
H22A 0.69550 0.24320 0.59390 0.0420*
H22B 0.84530 0.30090 0.63700 0.0420*
H22C 0.80030 0.29910 0.54420 0.0420*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0412 (2) 0.0256 (2) 0.0610 (3) 0.0126 (2) 0.0016 (2) −0.0114 (2)
O1 0.0172 (4) 0.0272 (5) 0.0331 (5) −0.0022 (4) 0.0115 (4) −0.0070 (4)
O2 0.0166 (4) 0.0173 (4) 0.0233 (4) 0.0020 (3) 0.0005 (3) −0.0029 (3)
O3 0.0564 (9) 0.0853 (13) 0.0211 (6) −0.0004 (9) −0.0024 (6) −0.0015 (7)
O4 0.0568 (9) 0.0691 (11) 0.0309 (7) 0.0223 (8) 0.0234 (6) 0.0011 (6)
O5 0.0219 (5) 0.0174 (5) 0.0383 (6) 0.0011 (4) 0.0049 (4) −0.0006 (4)
N1 0.0132 (4) 0.0185 (5) 0.0218 (5) 0.0004 (4) 0.0063 (4) −0.0034 (4)
N2 0.0454 (8) 0.0378 (8) 0.0200 (6) 0.0035 (7) 0.0076 (6) −0.0022 (5)
C1 0.0154 (5) 0.0212 (6) 0.0191 (5) −0.0009 (4) 0.0039 (4) −0.0037 (4)
C2 0.0159 (5) 0.0188 (5) 0.0184 (5) 0.0001 (4) 0.0029 (4) −0.0021 (4)
C3 0.0125 (4) 0.0196 (6) 0.0190 (5) 0.0020 (4) 0.0027 (4) −0.0026 (4)
C4 0.0168 (5) 0.0166 (5) 0.0193 (5) 0.0010 (4) 0.0027 (4) −0.0002 (4)
C5 0.0217 (6) 0.0207 (6) 0.0230 (6) 0.0017 (5) −0.0015 (5) −0.0030 (5)
C6 0.0273 (6) 0.0210 (6) 0.0277 (7) 0.0020 (6) −0.0020 (5) −0.0049 (5)
C7 0.0288 (7) 0.0198 (6) 0.0312 (7) 0.0055 (6) 0.0034 (6) −0.0038 (5)
C8 0.0194 (6) 0.0236 (7) 0.0352 (8) 0.0047 (5) 0.0008 (5) −0.0014 (6)
C9 0.0165 (5) 0.0206 (6) 0.0294 (7) 0.0008 (5) 0.0006 (5) −0.0025 (5)
C10 0.0136 (4) 0.0170 (5) 0.0190 (5) −0.0001 (4) 0.0030 (4) −0.0021 (4)
C11 0.0163 (5) 0.0228 (6) 0.0221 (6) 0.0035 (5) 0.0045 (4) −0.0009 (5)
C12 0.0224 (6) 0.0261 (7) 0.0216 (6) 0.0028 (5) 0.0080 (5) −0.0027 (5)
C13 0.0277 (6) 0.0219 (6) 0.0180 (5) −0.0021 (5) 0.0059 (5) −0.0033 (5)
C14 0.0245 (6) 0.0235 (6) 0.0208 (6) 0.0003 (5) −0.0002 (5) 0.0006 (5)
C15 0.0168 (5) 0.0216 (6) 0.0219 (6) 0.0026 (5) 0.0016 (4) −0.0008 (5)
C16 0.0139 (4) 0.0176 (5) 0.0185 (5) 0.0003 (4) 0.0028 (4) −0.0032 (4)
C17 0.0134 (4) 0.0201 (6) 0.0257 (6) 0.0011 (4) 0.0046 (4) −0.0020 (5)
C18 0.0147 (5) 0.0216 (6) 0.0260 (6) −0.0010 (5) 0.0035 (4) 0.0006 (5)
C19 0.0178 (5) 0.0190 (6) 0.0208 (6) −0.0002 (5) 0.0013 (4) −0.0014 (4)
C20 0.0175 (5) 0.0210 (6) 0.0233 (6) 0.0027 (5) 0.0056 (4) −0.0029 (5)
C21 0.0157 (5) 0.0204 (6) 0.0231 (6) 0.0004 (5) 0.0063 (4) −0.0028 (5)
C22 0.0270 (7) 0.0204 (6) 0.0372 (8) 0.0041 (6) 0.0069 (6) 0.0013 (6)

Geometric parameters (Å, °)

Cl1—C7 1.7456 (17) C13—C14 1.387 (2)
O1—C1 1.2160 (16) C14—C15 1.390 (2)
O2—C2 1.4061 (17) C16—C17 1.3957 (18)
O2—C4 1.3795 (17) C16—C21 1.3968 (18)
O3—N2 1.224 (2) C17—C18 1.390 (2)
O4—N2 1.231 (3) C18—C19 1.3943 (18)
O5—C19 1.3746 (17) C19—C20 1.3942 (18)
O5—C22 1.429 (2) C20—C21 1.387 (2)
N1—C1 1.3625 (18) C2—H2A 1.0000
N1—C3 1.4756 (18) C3—H3A 1.0000
N1—C16 1.4098 (19) C5—H5A 0.9500
N2—C13 1.474 (2) C6—H6A 0.9500
C1—C2 1.5277 (19) C8—H8A 0.9500
C2—C3 1.5733 (19) C9—H9A 0.9500
C3—C10 1.5048 (18) C11—H11A 0.9500
C4—C5 1.3940 (19) C12—H12A 0.9500
C4—C9 1.3894 (18) C14—H14A 0.9500
C5—C6 1.386 (2) C15—H15A 0.9500
C6—C7 1.391 (3) C17—H17A 0.9500
C7—C8 1.384 (2) C18—H18A 0.9500
C8—C9 1.393 (2) C20—H20A 0.9500
C10—C11 1.3971 (18) C21—H21A 0.9500
C10—C15 1.3938 (18) C22—H22A 0.9800
C11—C12 1.3920 (19) C22—H22B 0.9800
C12—C13 1.379 (2) C22—H22C 0.9800
C2—O2—C4 117.25 (10) O5—C19—C18 116.37 (12)
C19—O5—C22 116.49 (11) O5—C19—C20 123.73 (12)
C1—N1—C3 95.86 (11) C18—C19—C20 119.90 (13)
C1—N1—C16 133.57 (12) C19—C20—C21 120.10 (12)
C3—N1—C16 130.43 (11) C16—C21—C20 120.02 (12)
O3—N2—O4 124.14 (15) O2—C2—H2A 113.00
O3—N2—C13 118.06 (17) C1—C2—H2A 113.00
O4—N2—C13 117.79 (15) C3—C2—H2A 113.00
O1—C1—N1 132.67 (14) N1—C3—H3A 112.00
O1—C1—C2 135.15 (13) C2—C3—H3A 112.00
N1—C1—C2 92.17 (10) C10—C3—H3A 112.00
O2—C2—C1 112.44 (10) C4—C5—H5A 120.00
O2—C2—C3 117.87 (11) C6—C5—H5A 120.00
C1—C2—C3 85.64 (10) C5—C6—H6A 121.00
N1—C3—C2 86.24 (9) C7—C6—H6A 120.00
N1—C3—C10 115.54 (11) C7—C8—H8A 120.00
C2—C3—C10 116.60 (11) C9—C8—H8A 120.00
O2—C4—C5 115.60 (11) C4—C9—H9A 120.00
O2—C4—C9 124.03 (12) C8—C9—H9A 120.00
C5—C4—C9 120.36 (13) C10—C11—H11A 120.00
C4—C5—C6 120.17 (13) C12—C11—H11A 120.00
C5—C6—C7 119.00 (15) C11—C12—H12A 121.00
Cl1—C7—C6 118.97 (13) C13—C12—H12A 121.00
Cl1—C7—C8 119.66 (13) C13—C14—H14A 121.00
C6—C7—C8 121.37 (15) C15—C14—H14A 121.00
C7—C8—C9 119.47 (13) C10—C15—H15A 120.00
C4—C9—C8 119.62 (13) C14—C15—H15A 120.00
C3—C10—C11 118.66 (11) C16—C17—H17A 120.00
C3—C10—C15 121.71 (11) C18—C17—H17A 120.00
C11—C10—C15 119.63 (12) C17—C18—H18A 120.00
C10—C11—C12 120.50 (12) C19—C18—H18A 120.00
C11—C12—C13 118.11 (13) C19—C20—H20A 120.00
N2—C13—C12 118.08 (15) C21—C20—H20A 120.00
N2—C13—C14 118.74 (14) C16—C21—H21A 120.00
C12—C13—C14 123.17 (13) C20—C21—H21A 120.00
C13—C14—C15 117.90 (14) O5—C22—H22A 109.00
C10—C15—C14 120.69 (13) O5—C22—H22B 109.00
N1—C16—C17 119.76 (12) O5—C22—H22C 109.00
N1—C16—C21 120.26 (11) H22A—C22—H22B 109.00
C17—C16—C21 119.99 (13) H22A—C22—H22C 109.00
C16—C17—C18 119.81 (12) H22B—C22—H22C 110.00
C17—C18—C19 120.19 (12)
C4—O2—C2—C1 170.01 (11) C2—C3—C10—C11 101.14 (14)
C4—O2—C2—C3 −92.79 (14) C2—C3—C10—C15 −78.33 (17)
C2—O2—C4—C5 −168.40 (12) O2—C4—C5—C6 179.78 (13)
C2—O2—C4—C9 12.45 (19) C9—C4—C5—C6 −1.0 (2)
C22—O5—C19—C18 −163.97 (13) O2—C4—C9—C8 −179.94 (13)
C22—O5—C19—C20 16.4 (2) C5—C4—C9—C8 1.0 (2)
C3—N1—C1—O1 178.91 (16) C4—C5—C6—C7 0.8 (2)
C3—N1—C1—C2 −2.36 (11) C5—C6—C7—Cl1 −179.53 (12)
C16—N1—C1—O1 −5.2 (3) C5—C6—C7—C8 −0.5 (2)
C16—N1—C1—C2 173.55 (14) Cl1—C7—C8—C9 179.44 (12)
C1—N1—C3—C2 2.30 (11) C6—C7—C8—C9 0.4 (3)
C1—N1—C3—C10 −115.47 (12) C7—C8—C9—C4 −0.6 (2)
C16—N1—C3—C2 −173.81 (13) C3—C10—C11—C12 −179.70 (13)
C16—N1—C3—C10 68.42 (18) C15—C10—C11—C12 −0.2 (2)
C1—N1—C16—C17 −172.79 (14) C3—C10—C15—C14 179.50 (13)
C1—N1—C16—C21 6.7 (2) C11—C10—C15—C14 0.0 (2)
C3—N1—C16—C17 1.9 (2) C10—C11—C12—C13 0.3 (2)
C3—N1—C16—C21 −178.63 (13) C11—C12—C13—N2 −179.27 (14)
O3—N2—C13—C12 −162.24 (17) C11—C12—C13—C14 −0.2 (2)
O3—N2—C13—C14 18.6 (2) N2—C13—C14—C15 179.09 (14)
O4—N2—C13—C12 18.5 (2) C12—C13—C14—C15 0.0 (2)
O4—N2—C13—C14 −160.65 (17) C13—C14—C15—C10 0.1 (2)
O1—C1—C2—O2 −60.7 (2) N1—C16—C17—C18 179.53 (12)
O1—C1—C2—C3 −179.12 (17) C21—C16—C17—C18 0.0 (2)
N1—C1—C2—O2 120.62 (12) N1—C16—C21—C20 −179.90 (12)
N1—C1—C2—C3 2.21 (10) C17—C16—C21—C20 −0.4 (2)
O2—C2—C3—N1 −115.16 (12) C16—C17—C18—C19 0.3 (2)
O2—C2—C3—C10 1.60 (17) C17—C18—C19—O5 −179.93 (13)
C1—C2—C3—N1 −2.04 (9) C17—C18—C19—C20 −0.3 (2)
C1—C2—C3—C10 114.72 (12) O5—C19—C20—C21 179.54 (13)
N1—C3—C10—C11 −159.77 (12) C18—C19—C20—C21 −0.1 (2)
N1—C3—C10—C15 20.76 (18) C19—C20—C21—C16 0.4 (2)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C16–C21 benzene ring.
D—H···A D—H H···A D···A D—H···A
C2—H2A···O4i 1.00 2.45 3.287 (2) 141
C3—H3A···O1ii 1.00 2.29 3.2439 (17) 159
C15—H15A···N1 0.95 2.58 2.9127 (18) 101
C20—H20A···O1iii 0.95 2.50 3.3086 (18) 144
C21—H21A···O1 0.95 2.52 3.1397 (18) 123
C6—H6A···Cg4iv 0.95 2.71 3.4145 (17) 131

Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, y+1/2, −z+3/2.

Table 2 The dihedral angles between the mean planes of the rings in the title molecule (°)

Ring 2 Ring 3 Ring 4
Ring 1 53.07 (9) 73.19 (9) 6.61 (9)
Ring 2 64.42 (7) 46.85 (7)
Ring 3 79.45 (7)

Ring 1 is the N1/C1–C3 β-lactam ring, ring 2 is the C4–C9 benzene ring, ring 3 is the C10–C15 benzene ring and ring 4 is C16–C21 benzene ring.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2266).

References

  1. Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466–o2467. [DOI] [PMC free article] [PubMed]
  2. Akkurt, M., Jarrahpour, A., Sharghi, H., Badrabady, S. A. T. & Büyükgüngör, O. (2011a). Acta Cryst. E67, o325. [DOI] [PMC free article] [PubMed]
  3. Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902–o903. [DOI] [PMC free article] [PubMed]
  4. Akkurt, M., Türktekin, S., Jarrahpour, A., Badrabady, S. A. T. & Büyükgüngör, O. (2011b). Acta Cryst. E67, o183. [DOI] [PMC free article] [PubMed]
  5. Baktır, Z., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1623–o1624. [DOI] [PMC free article] [PubMed]
  6. Banik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523–2528. [DOI] [PubMed]
  7. Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522–o2523. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Garud, D. R., Garud, D. D. & Koketsu, M. (2009). Org. Biomol. Chem. 7, 2591–2598. [DOI] [PubMed]
  11. Jarrahpor, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.
  12. Jarrahpour, A. & Zarei, M. (2006). Molecules 11, 49-58. [DOI] [PMC free article] [PubMed]
  13. Jarrahpour, A. & Zarei, M. (2010). Tetrahedron, 66, 5017–5023.
  14. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, England.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Yalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626–o627. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013018/su2266sup1.cif

e-67-o1101-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013018/su2266Isup2.hkl

e-67-o1101-Isup2.hkl (514.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES