Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):m597. doi: 10.1107/S1600536811013493

catena-Poly[[aqua­(benzoato-κ2 O,O′)(benzoic acid-κO)calcium]-μ3-benzoato-κ4 O:O,O′:O′]

Olimjon Azizov a, Zukhra Kadirova b,*, Tohir Azizov a, Samat Tolipov c, Bakhtiyar Ibragimov c
PMCID: PMC3089294  PMID: 21754317

Abstract

In title compound, [Ca(C7H5O2)2(C7H6O2)(H2O)]n, the eightfold-coordinated CaII ion is bonded to four carboxyl­ate O atoms from two benzoate ions, an O atom from benzoic acid and a water O atom. One of the carboxyl­ate groups bridges adjacent Ca2+ ions, forming a polymeric ribbon structure parallel to [010]. In the crystal, the benzoate anions and water mol­ecule inter­act by way of inter- and intra­molecular O—H⋯O hydrogen bonds.

Related literature

For background to the crystal structures and physical stability of calcium benzoate hydrates, mesophases and related compounds, see: Cherkezova et al. (1987); Zhang et al. (1999); Yano et al. (2001); Senkovska & Thewalt (2005); Terakita & Byrn (2006).graphic file with name e-67-0m597-scheme1.jpg

Experimental

Crystal data

  • [Ca(C7H5O2)2(C7H6O2)(H2O)]

  • M r = 422.43

  • Monoclinic, Inline graphic

  • a = 15.5535 (3) Å

  • b = 6.61183 (16) Å

  • c = 20.1828 (4) Å

  • β = 94.3750 (18)°

  • V = 2069.49 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.96 mm−1

  • T = 293 K

  • 0.55 × 0.45 × 0.40 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.782, T max = 1.000

  • 7257 measured reflections

  • 3847 independent reflections

  • 2961 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.121

  • S = 1.07

  • 3847 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013493/bv2180sup1.cif

e-67-0m597-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013493/bv2180Isup2.hkl

e-67-0m597-Isup2.hkl (188.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O5i 0.76 (3) 2.05 (3) 2.779 (2) 163 (3)
O1—H1O⋯O6 0.93 (3) 1.68 (3) 2.597 (2) 167 (3)
O1W—H2W1⋯O6ii 0.89 (3) 1.90 (3) 2.754 (2) 159 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Grant of Fundamental Research of Centers of Science and Technology, Republic Uzbekistan F 3–142.

supplementary crystallographic information

Comment

The synthesis and structure determination of inorganic polymers are interesting subject for basic inorganic chemistry and materials science. Depending on the pH and other synthetic conditions, many calcium benzoates with different coordination modes, polymeric arrangements and molecular topologies have been observed, e.g. [Ca(C6H5COO)2]×3H2O(neutral solution; Terakita et al., 2006), Ca(C6H5COO)2](C6H5COO)0.5×2H2O (acid solution; Cherkezova et al., 1987), [Ca(C6H5COO)(H2O)3](C6H5COO)]n (basic solution; Senkovska et al., 2005),[Ca(C6H5COO)2(C3H7NO)(H2O)]n (dimetylformamide solution; Yano et al., 2001), [Ca(C6H5COO)2] (hydrothermal conditions; Zhang et al., 1999).

In this study we synthesized the CaII polymeric compound, (I), bridged by a benzoate group, and report the structure of the title compound, (I). The molecular structure is shown on Fig.1 and geometrical parameters are available from archived CIF.

The asymmetric unit of (I) consists of one Ca centre, two benzoate anions, benzoic acid and one water molecule (Fig 1). The calcium ion is surrounded by eight O atoms from two tri- and bidentate benzoates, a monodentate benzoic acid molecule, and a water molecule. The CaO8 polyhedron deviates extensively from idealized octacoordinated geometries found in other complexes (Senkovska et al., 2005; Yano et al., 2001). There are three different coordination modes of benzoic acid in crystal structure. The tridentate benzoate forms simultaneously the planar four-membered chelate and the buckled four-membered Ca–O–Ca–O rings by bridging adjacent Ca2+ ions. The Ca–O bridging bond lengths [2.3204 (14) and 2.3781 (14) Å] are considerably shorter than the Ca–O chelate distances [2.7414 (14) and 2.4567 (14) Å]. The bidentate benzoate has longer Ca–O distances [2.4837 (17) and 2.5628 (15) Å] than observed for monodentate benzoic acid and calcium ion [2.4467 (15) Å].

The bridging interactions and the system of H-bonds form polymeric structure consisted from the infinite ribbons along the b axis and separated by the stacked neighbouring phenyl groups. The benzoic acid hydroxyl group and an water molecule act as H-bond donors, and the O5 and O6 atoms of the bidentate COO- group are H-bond acceptors. The combination of these hydrogen bonds, π-π stacking interactions and the Ca–O bonds leads to the formation of a two-dimensional network running parallel to the ac-plane (Fig. 2).

Experimental

The Ca(NO3)2×4H2O (1 mmol) and benzoic acid (3 mmol) in 75 ml of ethanol were mixed with the the benzoic acid water solution (2 mmol). The mixture were strirred 6 h at room temperature, and after 3 days the precipitated colourless crystals were filtered off, washed three times with ethanol, dried at room temperature. Crystals of the title compound, suitable to X-ray diffraction analysis, were selected directly from the sample as prepared.

Refinement

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

All the H-atoms were found in the difference Fourier synthesis and refined with restrained O–H 0.82 (2) Å, H···H 1.35 (2) Å, but free isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

A view of the structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.

Fig. 2.

Fig. 2.

The crystal structure packing scheme showing the hydrogen bonds system.

Crystal data

[Ca(C7H5O2)2(C7H6O2)(H2O)] F(000) = 880
Mr = 422.43 Dx = 1.356 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 3133 reflections
a = 15.5535 (3) Å θ = 3.5–70.6°
b = 6.61183 (16) Å µ = 2.96 mm1
c = 20.1828 (4) Å T = 293 K
β = 94.3750 (18)° Monoclinic, colourless
V = 2069.49 (8) Å3 0.55 × 0.45 × 0.40 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 3847 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2961 reflections with I > 2σ(I)
graphite Rint = 0.025
Detector resolution: 10.2576 pixels mm-1 θmax = 71.1°, θmin = 3.5°
q/2θ scans h = −17→18
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −7→7
Tmin = 0.782, Tmax = 1.000 l = −22→24
7257 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0754P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3847 reflections Δρmax = 0.27 e Å3
275 parameters Δρmin = −0.26 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0050 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ca1 0.45197 (2) 0.25532 (5) 0.033347 (19) 0.03194 (16)
O1W 0.39727 (11) 0.2332 (3) −0.08057 (9) 0.0443 (4)
O1 0.36276 (12) 0.5693 (3) 0.16770 (10) 0.0675 (6)
O2 0.33262 (10) 0.2999 (3) 0.10426 (9) 0.0508 (4)
O3 0.59059 (9) 0.0795 (2) −0.02003 (7) 0.0394 (3)
O4 0.58487 (8) 0.4064 (2) −0.00286 (7) 0.0368 (3)
O5 0.54914 (11) 0.1360 (2) 0.12874 (8) 0.0528 (4)
O6 0.51357 (9) 0.4557 (2) 0.13481 (7) 0.0430 (4)
C1 0.1629 (2) 0.2997 (6) 0.14566 (18) 0.0862 (11)
H1A 0.1815 0.1822 0.1258 0.103*
C2 0.0778 (2) 0.3155 (8) 0.1610 (2) 0.1124 (15)
H2A 0.0396 0.2089 0.1522 0.135*
C3 0.0512 (3) 0.4885 (8) 0.1889 (2) 0.1325 (19)
H3A −0.0059 0.5006 0.1990 0.159*
C4 0.1074 (3) 0.6473 (9) 0.2026 (3) 0.1310 (18)
H4A 0.0881 0.7654 0.2216 0.157*
C5 0.1927 (2) 0.6303 (6) 0.18807 (18) 0.0944 (12)
H5A 0.2312 0.7358 0.1975 0.113*
C6 0.21971 (16) 0.4540 (4) 0.15927 (12) 0.0590 (7)
C7 0.31009 (15) 0.4324 (4) 0.14106 (12) 0.0499 (6)
C8 0.76481 (14) 0.4308 (4) 0.02152 (12) 0.0492 (6)
H8A 0.7323 0.5391 0.0351 0.059*
C9 0.85412 (16) 0.4419 (5) 0.02713 (15) 0.0660 (8)
H9A 0.8813 0.5579 0.0444 0.079*
C10 0.90217 (16) 0.2842 (5) 0.00760 (17) 0.0744 (9)
H10A 0.962 0.2931 0.0110 0.089*
C11 0.86257 (17) 0.1122 (5) −0.01702 (18) 0.0801 (10)
H11A 0.8957 0.0043 −0.0301 0.096*
C12 0.77321 (15) 0.0979 (4) −0.02254 (14) 0.0590 (7)
H12A 0.7466 −0.0201 −0.0386 0.071*
C13 0.72419 (13) 0.2590 (3) −0.00417 (11) 0.0378 (5)
C14 0.62723 (12) 0.2463 (3) −0.01012 (9) 0.0306 (4)
C15 0.59799 (16) 0.4938 (4) 0.26173 (12) 0.0542 (6)
H15A 0.5636 0.6006 0.2455 0.065*
C16 0.64396 (19) 0.5095 (5) 0.32353 (14) 0.0721 (8)
H16A 0.6395 0.626 0.3489 0.087*
C17 0.69539 (17) 0.3548 (6) 0.34678 (14) 0.0765 (9)
H17A 0.7262 0.3663 0.3879 0.092*
C18 0.70210 (18) 0.1819 (6) 0.31004 (15) 0.0743 (9)
H18A 0.7377 0.0771 0.3261 0.089*
C19 0.65589 (15) 0.1632 (5) 0.24906 (12) 0.0553 (6)
H19A 0.6600 0.0453 0.2244 0.066*
C20 0.60356 (13) 0.3198 (4) 0.22475 (10) 0.0401 (5)
C21 0.55280 (13) 0.3005 (3) 0.15892 (10) 0.0379 (5)
H1W1 0.4060 (18) 0.139 (5) −0.1002 (14) 0.062 (10)*
H2W1 0.4184 (19) 0.325 (5) −0.1072 (15) 0.074 (10)*
H1O 0.420 (2) 0.543 (5) 0.1603 (16) 0.090 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ca1 0.0308 (2) 0.0223 (2) 0.0429 (2) −0.00138 (15) 0.00329 (15) −0.00246 (16)
O1W 0.0509 (9) 0.0296 (9) 0.0512 (9) 0.0004 (7) −0.0051 (7) −0.0028 (8)
O1 0.0524 (11) 0.0671 (13) 0.0837 (13) 0.0043 (9) 0.0102 (9) −0.0329 (11)
O2 0.0478 (9) 0.0470 (10) 0.0600 (10) −0.0015 (7) 0.0187 (7) −0.0103 (8)
O3 0.0376 (7) 0.0237 (8) 0.0574 (9) −0.0041 (6) 0.0064 (6) −0.0038 (6)
O4 0.0330 (7) 0.0254 (7) 0.0518 (8) 0.0025 (6) 0.0030 (6) −0.0031 (6)
O5 0.0690 (10) 0.0360 (9) 0.0523 (9) 0.0049 (8) −0.0028 (8) −0.0066 (8)
O6 0.0437 (8) 0.0357 (9) 0.0490 (8) 0.0028 (6) −0.0005 (6) 0.0012 (7)
C1 0.0648 (19) 0.103 (2) 0.096 (2) −0.0124 (18) 0.0364 (17) −0.032 (2)
C2 0.065 (2) 0.153 (4) 0.124 (3) −0.024 (2) 0.044 (2) −0.046 (3)
C3 0.062 (2) 0.193 (5) 0.148 (4) 0.011 (3) 0.043 (2) −0.056 (4)
C4 0.079 (3) 0.162 (4) 0.157 (4) 0.029 (3) 0.039 (3) −0.064 (4)
C5 0.074 (2) 0.105 (3) 0.107 (3) 0.015 (2) 0.0255 (18) −0.039 (2)
C6 0.0508 (14) 0.0750 (19) 0.0526 (13) 0.0080 (13) 0.0136 (11) −0.0091 (13)
C7 0.0498 (13) 0.0520 (15) 0.0491 (13) 0.0048 (11) 0.0109 (10) −0.0039 (12)
C8 0.0369 (11) 0.0421 (14) 0.0681 (15) −0.0041 (10) 0.0007 (10) −0.0077 (12)
C9 0.0414 (13) 0.0679 (19) 0.0874 (19) −0.0160 (13) −0.0035 (12) −0.0104 (16)
C10 0.0273 (11) 0.094 (2) 0.102 (2) −0.0010 (14) 0.0051 (13) −0.0049 (19)
C11 0.0390 (13) 0.083 (2) 0.119 (3) 0.0131 (15) 0.0089 (14) −0.023 (2)
C12 0.0383 (12) 0.0518 (15) 0.0873 (19) 0.0051 (11) 0.0074 (11) −0.0166 (14)
C13 0.0307 (10) 0.0364 (12) 0.0462 (11) −0.0009 (8) 0.0028 (8) 0.0014 (9)
C14 0.0296 (9) 0.0256 (10) 0.0368 (10) −0.0008 (8) 0.0045 (7) 0.0006 (8)
C15 0.0518 (13) 0.0597 (16) 0.0507 (13) 0.0025 (12) 0.0003 (10) −0.0096 (12)
C16 0.0679 (17) 0.089 (2) 0.0579 (15) −0.0055 (16) −0.0038 (13) −0.0217 (16)
C17 0.0522 (15) 0.126 (3) 0.0501 (15) 0.0002 (18) −0.0076 (12) 0.0002 (18)
C18 0.0553 (16) 0.106 (2) 0.0605 (16) 0.0200 (17) −0.0007 (13) 0.0175 (18)
C19 0.0498 (13) 0.0640 (17) 0.0524 (13) 0.0115 (12) 0.0053 (11) 0.0037 (13)
C20 0.0339 (10) 0.0482 (13) 0.0388 (11) −0.0014 (9) 0.0059 (8) 0.0021 (10)
C21 0.0338 (10) 0.0386 (12) 0.0415 (11) −0.0004 (9) 0.0053 (8) 0.0002 (9)

Geometric parameters (Å, °)

O4—Ca1 2.4566 (13) C4—C5 1.385 (5)
Ca1—O3i 2.3204 (14) C4—H4A 0.9300
Ca1—O4ii 2.3781 (14) C5—C6 1.382 (4)
Ca1—O1W 2.3943 (17) C5—H5A 0.9300
Ca1—O2 2.4467 (15) C6—C7 1.487 (3)
Ca1—O5 2.4837 (17) C8—C13 1.382 (3)
Ca1—O6 2.5628 (15) C8—C9 1.387 (3)
Ca1—O3 2.7414 (14) C8—H8A 0.9300
Ca1—C21 2.892 (2) C9—C10 1.359 (4)
Ca1—C14 2.9272 (18) C9—H9A 0.9300
O1W—Ca1 2.3944 (17) C10—C11 1.369 (4)
O1W—H1W1 0.75 (3) C10—H10A 0.9300
O1W—H2W1 0.89 (3) C11—C12 1.389 (4)
O1—C7 1.309 (3) C11—H11A 0.9300
O1—H1O 0.92 (4) C12—C13 1.377 (3)
O2—C7 1.217 (3) C12—H12A 0.9300
O3—C14 1.250 (2) C13—C14 1.506 (3)
O3—Ca1 2.7414 (14) C14—Ca1 2.9273 (18)
O4—C14 1.261 (2) C15—C20 1.378 (3)
O4—Ca1 2.4567 (13) C15—C16 1.394 (3)
O5—C21 1.245 (3) C15—H15A 0.9300
O5—Ca1 2.4838 (17) C16—C17 1.360 (4)
O6—C21 1.272 (2) C16—H16A 0.9300
O6—Ca1 2.5628 (15) C17—C18 1.371 (5)
C1—C6 1.364 (4) C17—H17A 0.9300
C1—C2 1.386 (4) C18—C19 1.383 (4)
C1—H1A 0.9300 C18—H18A 0.9300
C2—C3 1.354 (6) C19—C20 1.384 (3)
C2—H2A 0.9300 C19—H19A 0.9300
C3—C4 1.381 (6) C20—C21 1.498 (3)
C3—H3A 0.9300 C21—Ca1 2.892 (2)
O1W—Ca1—O2 109.84 (6) C5—C6—C7 120.6 (2)
O1W—Ca1—O3 80.16 (5) C1—C6—C7 119.3 (3)
O1W—Ca1—O4 89.11 (5) C1—C6—C5 120.2 (3)
O1W—Ca1—O5 151.11 (6) O1—C7—C6 114.0 (2)
O1W—Ca1—O6 151.97 (6) O2—C7—C6 122.8 (2)
O2—Ca1—O3 159.31 (6) O1—C7—O2 123.3 (2)
O2—Ca1—O4 144.90 (6) C9—C8—C13 120.0 (2)
O2—Ca1—O5 91.65 (6) C8—C9—C10 120.4 (3)
O2—Ca1—O6 74.00 (5) C9—C10—C11 120.1 (2)
O3—Ca1—O4 49.51 (4) C10—C11—C12 120.4 (3)
O3—Ca1—O5 73.72 (5) C3—C4—H4A 120.00
O3—Ca1—O6 106.02 (4) C5—C4—H4A 120.00
O4—Ca1—O5 83.32 (5) C4—C5—H5A 121.00
O4—Ca1—O6 75.86 (5) C6—C5—H5A 120.00
O5—Ca1—O6 51.43 (4) C9—C8—H8A 120.00
C11—C12—C13 119.8 (2) C13—C8—H8A 120.00
C8—C13—C12 119.4 (2) C8—C9—H9A 120.00
C8—C13—C14 120.15 (18) C10—C9—H9A 120.00
C12—C13—C14 120.46 (19) C9—C10—H10A 120.00
O4—C14—C13 118.21 (17) C11—C10—H10A 120.00
O3—C14—O4 121.54 (17) C10—C11—H11A 120.00
O3—C14—C13 120.22 (17) C12—C11—H11A 120.00
C16—C15—C20 119.9 (2) C11—C12—H12A 120.00
C15—C16—C17 120.1 (3) C13—C12—H12A 120.00
C16—C17—C18 120.5 (3) C16—C15—H15A 120.00
C17—C18—C19 120.0 (3) C20—C15—H15A 120.00
C18—C19—C20 120.0 (3) C15—C16—H16A 120.00
C15—C20—C19 119.5 (2) C17—C16—H16A 120.00
C15—C20—C21 120.1 (2) C16—C17—H17A 120.00
C19—C20—C21 120.4 (2) C18—C17—H17A 120.00
O5—C21—C20 120.62 (19) C17—C18—H18A 120.00
O6—C21—C20 118.40 (18) C19—C18—H18A 120.00
O5—C21—O6 120.98 (19) C18—C19—H19A 120.00
C2—C1—H1A 120.00 C20—C19—H19A 120.00
C6—C1—H1A 120.00 Ca1—O4—C14 98.75 (11)
C1—C2—H2A 120.00 O1W—Ca1—O3i 75.71 (6)
C3—C2—H2A 121.00 O1W—Ca1—O4ii 75.41 (6)
C2—C3—H3A 119.00 O2—Ca1—O3i 87.72 (6)
C4—C3—H3A 119.00 O2—Ca1—O4ii 81.92 (6)
Ca1—O2—C7 135.25 (16) O3—Ca1—O3i 77.05 (5)
Ca1—O3—C14 85.74 (11) O3—Ca1—O4ii 118.58 (4)
Ca1—O5—C21 95.98 (12) O3i—Ca1—O4 126.34 (5)
Ca1—O6—C21 91.59 (11) O4—Ca1—O4ii 74.47 (4)
C7—O1—H1O 112 (2) O3i—Ca1—O5 86.45 (5)
Ca1—O1W—H1W1 119 (2) O4ii—Ca1—O5 128.29 (5)
Ca1—O1W—H2W1 115 (2) O3i—Ca1—O6 132.20 (5)
H1W1—O1W—H2W1 99 (3) O4ii—Ca1—O6 77.79 (5)
C2—C1—C6 120.9 (4) O3i—Ca1—O4ii 143.74 (5)
C1—C2—C3 119.0 (4) Ca1—O3—Ca1i 102.95 (5)
C2—C3—C4 121.1 (4) Ca1i—O3—C14 169.26 (13)
C3—C4—C5 119.9 (5) Ca1—O4—Ca1ii 105.53 (5)
C4—C5—C6 119.0 (4) Ca1ii—O4—C14 151.28 (12)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O5i 0.76 (3) 2.05 (3) 2.779 (2) 163 (3)
O1—H1O···O6 0.93 (3) 1.68 (3) 2.597 (2) 167 (3)
O1W—H2W1···O6ii 0.89 (3) 1.90 (3) 2.754 (2) 159 (3)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2180).

References

  1. Cherkezova, V. R., Musaev, F. N. & Karaev, Z. Sh. (1987). Russ. J. Coord. Chem. 13, 903–908.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Oxford Diffraction (2007). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  4. Senkovska, I. & Thewalt, U. (2005). Acta Cryst. C61, m448–m449. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Terakita, A. & Byrn, S. R. (2006). J. Pharm. Sci. 95, 1162–1172. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  8. Yano, S., Numata, M., Kato, M., Motoo, S. & Nishimura, T. (2001). Acta Cryst. E57, m488–m490.
  9. Zhang, K., Yuan, J., Yuan, L. & Sun, J. (1999). Wuhan Univ. J. Nat. Sci. 4, 89–94.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013493/bv2180sup1.cif

e-67-0m597-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013493/bv2180Isup2.hkl

e-67-0m597-Isup2.hkl (188.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES