Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):m602. doi: 10.1107/S1600536811013511

A new copper(II) complex based on 1-[(1H-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole

Huai-xia Yang a,*, Jun Zhang b, Dong Zhao b
PMCID: PMC3089299  PMID: 21754321

Abstract

The title complex, tetra­aqua­{1-[(1H-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole-κN 4}(sulfato-κO)copper(II) sesquihydrate, [Cu(SO4)(C9H8N6)(H2O)4]·1.5H2O, is composed of one copper atom, one 1-[(2H-benzotriazol-1-yl)meth­yl]-1-H-1,2,4-triazole (bmt) ligand, one sulfate ligand, four coordin­ated water mol­ecules and one and a half uncoordinated water mol­ecules. The CuII atom is six-coordinated by one N atom from a bmt ligand and five O atoms from the monodentate sulfate ligand and four water mol­ecules in a distorted octa­hedral geometry. In the crystal, adjacent mol­ecules are linked through O—H⋯O and O—H⋯N hydrogen bonds involving the sulfate anion and the coordin­ated and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For background to complexes based on triazole and benzotriazole derivatives, see: Aromia et al. (2011); Meng et al. (2009). For background to complexes with CuII atoms, see: Zhou et al. (2007); Brown et al. (2009).graphic file with name e-67-0m602-scheme1.jpg

Experimental

Crystal data

  • [Cu(SO4)(C9H8N6)(H2O)4]·1.5H2O

  • M r = 458.90

  • Monoclinic, Inline graphic

  • a = 12.496 (3) Å

  • b = 8.662 (2) Å

  • c = 31.543 (6) Å

  • β = 90.97 (3)°

  • V = 3413.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.15 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear, Rigaku/MSC, 2006) T min = 0.758, T max = 0.810

  • 13448 measured reflections

  • 4046 independent reflections

  • 3502 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.088

  • S = 1.10

  • 4046 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL .

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013511/bv2183sup1.cif

e-67-0m602-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013511/bv2183Isup2.hkl

e-67-0m602-Isup2.hkl (198.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O9 0.85 1.82 2.662 (3) 170
O2—H3W⋯O10i 0.85 1.89 2.723 (2) 165
O9—H9W⋯N6ii 0.85 2.00 2.836 (3) 168
O10—H11W⋯O6iii 0.85 1.93 2.771 (2) 170
O1—H2W⋯N2iii 0.85 2.16 2.951 (3) 155
O3—H5W⋯O8iv 0.85 1.99 2.789 (3) 156
O4—H7W⋯O6v 0.85 1.86 2.697 (2) 170
O9—H10W⋯O7v 0.85 1.99 2.824 (3) 165
O3—H6W⋯O6v 0.85 2.19 2.943 (3) 148
O2—H4W⋯O5vi 0.85 1.92 2.766 (2) 174
O4—H8W⋯O8vi 0.85 1.85 2.702 (2) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The study was supported by the Science and Technology Department of Henan Province (082102330003).

supplementary crystallographic information

Comment

Triazole and benzotriazole derivatives have been widely used in the construction of complexes since they can act as polydentate ligands and function as bridging ligands (Aromia et al., 2011; Meng et al., 2009). Moreover, CuII complexes have attracted more and more attention owing to their intrinsic esthetic appeal and potential applications in various fields (Zhou et al., 2007; Brown et al., 2009). In this work, through the reaction of 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (bmt) with copper sulfate at room temperature, we obtained the title complex [Cu(bmt) (SO4) (H2O)4] (H2O)1.5, which is reported here. As shown in Figure 1, each CuII ion is located in a slightly distorted octahedral environment and is coordinated to one nitrogen atom from the bmt ligand, five oxygen atoms from four water molecules and one monodentate sulfate. Atoms O1, O2, O4, N1 and Cu1 are nearly co-planar (the mean deviation from the plane is 0.0203 Å). The apical Cu1—O3 and Cu1—O5 bond lengths (2.331 (2) and 2.465 Å) are considerably longer than the equatorial ones (1.974 (2)- 2.002 (2) Å) due to the Jahn-Teller effect. Intramolecular O—H···O hydrogen bonds stabilize the molecular configuration and O—H···O, O—H···N hydrogen bonds between adjacent molecules consolidate the crystal packing.

Experimental

The ligand 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (2 ml) of copper sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After three weeks blue crystals with good quality were obtained from the filtrate and dried in air.

Refinement

H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH2) Å and O-H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C,O).

Figures

Fig. 1.

Fig. 1.

View of the title complex, showing the labeling of the 30% probability ellipsoids. H atoms are omitted for clarity.

Crystal data

[Cu(SO4)(C9H8N6)(H2O)4]·1.5H2O F(000) = 1888
Mr = 458.90 Dx = 1.786 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4587 reflections
a = 12.496 (3) Å θ = 2.6–27.9°
b = 8.662 (2) Å µ = 1.47 mm1
c = 31.543 (6) Å T = 293 K
β = 90.97 (3)° Prism, blue
V = 3413.7 (12) Å3 0.20 × 0.16 × 0.15 mm
Z = 8

Data collection

Rigaku Saturn diffractometer 4046 independent reflections
Radiation source: fine-focus sealed tube 3502 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 28.5714 pixels mm-1 θmax = 27.9°, θmin = 2.6°
ω scans h = −16→16
Absorption correction: multi-scan (CrystalClear, Rigaku/MSC, 2006) k = −8→11
Tmin = 0.758, Tmax = 0.810 l = −41→36
13448 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.547P] where P = (Fo2 + 2Fc2)/3
4046 reflections (Δ/σ)max = 0.003
240 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.76191 (2) 0.23448 (3) 0.685956 (9) 0.02244 (10)
N1 0.90110 (15) 0.1958 (2) 0.65733 (6) 0.0239 (4)
N2 1.05863 (17) 0.0889 (2) 0.64129 (7) 0.0300 (5)
N3 1.04251 (15) 0.2230 (2) 0.61944 (6) 0.0220 (4)
N4 1.10175 (16) 0.2341 (2) 0.54782 (6) 0.0247 (4)
N5 1.02130 (17) 0.3031 (3) 0.52517 (7) 0.0332 (5)
N6 1.01910 (18) 0.2435 (3) 0.48737 (7) 0.0349 (5)
O1 0.70071 (13) 0.31913 (19) 0.63234 (5) 0.0274 (4)
H1W 0.6484 0.2655 0.6231 0.033*
H2W 0.6787 0.4113 0.6352 0.033*
O2 0.82932 (13) 0.1504 (2) 0.73862 (5) 0.0296 (4)
H3W 0.8809 0.2075 0.7469 0.036*
H4W 0.7954 0.1060 0.7583 0.036*
O3 0.69989 (14) −0.0117 (2) 0.66866 (6) 0.0377 (5)
H5W 0.7299 −0.0835 0.6829 0.045*
H6W 0.6351 −0.0260 0.6755 0.045*
O4 0.62735 (13) 0.28272 (19) 0.71502 (5) 0.0262 (4)
H7W 0.5760 0.2261 0.7063 0.031*
H8W 0.6359 0.2859 0.7418 0.031*
O5 0.79519 (13) 0.50995 (19) 0.70084 (5) 0.0294 (4)
O6 0.97927 (13) 0.5740 (2) 0.68985 (5) 0.0306 (4)
O7 0.84885 (15) 0.6278 (2) 0.63497 (5) 0.0325 (4)
O8 0.84941 (15) 0.77569 (18) 0.69968 (5) 0.0304 (4)
O9 0.54758 (15) 0.1536 (2) 0.59423 (5) 0.0363 (4)
H9W 0.5344 0.1744 0.5683 0.044*
H10W 0.4907 0.1616 0.6085 0.044*
O10 0.5000 0.8423 (3) 0.7500 0.0351 (6)
H11W 0.4932 0.9044 0.7293 0.042*
C1 0.94835 (18) 0.2833 (3) 0.62931 (7) 0.0237 (5)
H1A 0.9201 0.3741 0.6180 0.028*
C2 0.9720 (2) 0.0775 (3) 0.66390 (8) 0.0304 (6)
H2A 0.9598 −0.0033 0.6826 0.036*
C3 1.1218 (2) 0.2839 (3) 0.59085 (7) 0.0271 (5)
H3A 1.1207 0.3958 0.5920 0.033*
H3B 1.1924 0.2496 0.6000 0.033*
C4 1.15259 (19) 0.1279 (3) 0.52359 (7) 0.0245 (5)
C5 1.0988 (2) 0.1353 (3) 0.48467 (8) 0.0280 (5)
C6 1.1307 (2) 0.0434 (3) 0.45077 (8) 0.0380 (7)
H6A 1.0950 0.0472 0.4247 0.046*
C7 1.2158 (2) −0.0516 (3) 0.45735 (10) 0.0442 (7)
H7A 1.2385 −0.1144 0.4353 0.053*
C8 1.2701 (2) −0.0572 (3) 0.49644 (10) 0.0433 (7)
H8A 1.3287 −0.1227 0.4995 0.052*
C9 1.2399 (2) 0.0309 (3) 0.53082 (9) 0.0340 (6)
H9A 1.2755 0.0258 0.5569 0.041*
S1 0.86691 (4) 0.62224 (6) 0.680761 (18) 0.02084 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01695 (15) 0.03034 (19) 0.02010 (17) −0.00004 (11) 0.00198 (11) 0.00009 (11)
N1 0.0208 (10) 0.0252 (11) 0.0259 (11) 0.0019 (8) 0.0041 (8) 0.0001 (8)
N2 0.0281 (11) 0.0278 (11) 0.0344 (13) 0.0062 (9) 0.0069 (9) 0.0071 (9)
N3 0.0216 (10) 0.0235 (10) 0.0208 (10) 0.0011 (8) 0.0032 (8) 0.0011 (8)
N4 0.0216 (10) 0.0311 (11) 0.0215 (11) 0.0046 (8) 0.0014 (8) 0.0020 (8)
N5 0.0289 (12) 0.0416 (13) 0.0292 (12) 0.0109 (10) 0.0005 (9) 0.0034 (10)
N6 0.0296 (12) 0.0479 (14) 0.0270 (12) 0.0077 (10) −0.0029 (9) 0.0014 (10)
O1 0.0290 (9) 0.0262 (9) 0.0270 (9) 0.0039 (7) −0.0024 (7) −0.0009 (7)
O2 0.0226 (9) 0.0409 (11) 0.0252 (9) −0.0061 (7) 0.0014 (7) 0.0041 (8)
O3 0.0296 (10) 0.0339 (11) 0.0494 (12) −0.0008 (8) −0.0039 (9) −0.0045 (9)
O4 0.0200 (8) 0.0334 (9) 0.0252 (9) −0.0042 (7) 0.0025 (7) −0.0016 (7)
O5 0.0286 (9) 0.0254 (9) 0.0345 (10) −0.0078 (7) 0.0075 (8) −0.0030 (7)
O6 0.0190 (8) 0.0371 (10) 0.0355 (11) −0.0002 (7) −0.0033 (7) 0.0005 (8)
O7 0.0344 (10) 0.0431 (11) 0.0197 (9) 0.0051 (8) −0.0020 (7) 0.0007 (8)
O8 0.0414 (11) 0.0213 (9) 0.0285 (10) −0.0001 (7) 0.0031 (8) −0.0014 (7)
O9 0.0346 (10) 0.0515 (12) 0.0228 (10) 0.0007 (9) −0.0018 (8) 0.0052 (8)
O10 0.0373 (15) 0.0287 (14) 0.0387 (16) 0.000 −0.0132 (12) 0.000
C1 0.0227 (12) 0.0253 (12) 0.0230 (12) 0.0054 (9) 0.0028 (9) 0.0014 (10)
C2 0.0293 (13) 0.0261 (13) 0.0362 (15) 0.0037 (10) 0.0091 (11) 0.0080 (11)
C3 0.0259 (12) 0.0323 (14) 0.0234 (13) −0.0025 (10) 0.0042 (10) 0.0004 (10)
C4 0.0232 (12) 0.0266 (13) 0.0240 (13) 0.0002 (9) 0.0045 (9) 0.0018 (10)
C5 0.0265 (13) 0.0324 (14) 0.0251 (14) −0.0007 (10) 0.0010 (10) 0.0025 (10)
C6 0.0394 (16) 0.0489 (17) 0.0257 (15) −0.0065 (13) 0.0023 (12) −0.0080 (12)
C7 0.0467 (18) 0.0411 (17) 0.0453 (19) −0.0024 (14) 0.0146 (14) −0.0121 (14)
C8 0.0323 (16) 0.0386 (17) 0.059 (2) 0.0095 (12) 0.0086 (14) −0.0033 (14)
C9 0.0267 (13) 0.0375 (15) 0.0376 (16) 0.0063 (11) −0.0033 (11) 0.0043 (12)
S1 0.0193 (3) 0.0228 (3) 0.0205 (3) −0.0010 (2) 0.0009 (2) −0.0003 (2)

Geometric parameters (Å, °)

Cu1—O4 1.974 (2) O4—H8W 0.8505
Cu1—O1 1.985 (2) O5—S1 1.473 (2)
Cu1—O2 1.988 (2) O6—S1 1.488 (2)
Cu1—N1 2.002 (2) O7—S1 1.459 (2)
Cu1—O3 2.331 (2) O8—S1 1.475 (2)
N1—C1 1.312 (3) O9—H9W 0.8501
N1—C2 1.368 (3) O9—H10W 0.8499
N2—C2 1.310 (3) O10—H11W 0.8500
N2—N3 1.363 (3) C1—H1A 0.9300
N3—C1 1.329 (3) C2—H2A 0.9300
N3—C3 1.451 (3) C3—H3A 0.9700
N4—C4 1.360 (3) C3—H3B 0.9700
N4—N5 1.362 (3) C4—C5 1.391 (3)
N4—C3 1.442 (3) C4—C9 1.393 (3)
N5—N6 1.299 (3) C5—C6 1.397 (3)
N6—C5 1.372 (3) C6—C7 1.358 (4)
O1—H1W 0.8501 C6—H6A 0.9300
O1—H2W 0.8499 C7—C8 1.398 (4)
O2—H3W 0.8501 C7—H7A 0.9300
O2—H4W 0.8499 C8—C9 1.384 (4)
O3—H5W 0.8499 C8—H8A 0.9300
O3—H6W 0.8500 C9—H9A 0.9300
O4—H7W 0.8499
O4—Cu1—O1 89.92 (7) N1—C1—H1A 125.0
O4—Cu1—O2 92.39 (7) N3—C1—H1A 125.0
O1—Cu1—O2 177.58 (7) N2—C2—N1 113.6 (2)
O4—Cu1—N1 177.18 (7) N2—C2—H2A 123.2
O1—Cu1—N1 90.16 (8) N1—C2—H2A 123.2
O2—Cu1—N1 87.50 (8) N4—C3—N3 111.5 (2)
O4—Cu1—O3 91.14 (7) N4—C3—H3A 109.3
O1—Cu1—O3 90.96 (7) N3—C3—H3A 109.3
O2—Cu1—O3 89.72 (7) N4—C3—H3B 109.3
N1—Cu1—O3 91.67 (7) N3—C3—H3B 109.3
C1—N1—C2 103.7 (2) H3A—C3—H3B 108.0
C1—N1—Cu1 127.68 (16) N4—C4—C5 104.0 (2)
C2—N1—Cu1 128.52 (16) N4—C4—C9 133.5 (2)
C2—N2—N3 102.88 (19) C5—C4—C9 122.5 (2)
C1—N3—N2 109.89 (19) N6—C5—C4 108.5 (2)
C1—N3—C3 128.3 (2) N6—C5—C6 130.8 (2)
N2—N3—C3 121.84 (19) C4—C5—C6 120.6 (2)
C4—N4—N5 110.47 (19) C7—C6—C5 117.5 (3)
C4—N4—C3 131.0 (2) C7—C6—H6A 121.3
N5—N4—C3 118.5 (2) C5—C6—H6A 121.3
N6—N5—N4 108.1 (2) C6—C7—C8 121.5 (3)
N5—N6—C5 108.9 (2) C6—C7—H7A 119.2
Cu1—O1—H1W 112.0 C8—C7—H7A 119.2
Cu1—O1—H2W 112.2 C9—C8—C7 122.5 (3)
H1W—O1—H2W 107.5 C9—C8—H8A 118.8
Cu1—O2—H3W 110.6 C7—C8—H8A 118.8
Cu1—O2—H4W 124.5 C8—C9—C4 115.3 (3)
H3W—O2—H4W 115.1 C8—C9—H9A 122.3
Cu1—O3—H5W 113.8 C4—C9—H9A 122.3
Cu1—O3—H6W 112.8 O7—S1—O5 111.25 (11)
H5W—O3—H6W 100.0 O7—S1—O8 110.46 (10)
Cu1—O4—H7W 111.9 O5—S1—O8 109.00 (10)
Cu1—O4—H8W 112.0 O7—S1—O6 109.24 (11)
H7W—O4—H8W 114.9 O5—S1—O6 108.10 (11)
H9W—O9—H10W 109.9 O8—S1—O6 108.73 (11)
N1—C1—N3 109.9 (2)
O4—Cu1—N1—C1 −53.0 (16) N5—N4—C3—N3 76.2 (3)
O1—Cu1—N1—C1 38.7 (2) C1—N3—C3—N4 −87.7 (3)
O2—Cu1—N1—C1 −140.7 (2) N2—N3—C3—N4 93.6 (3)
O3—Cu1—N1—C1 129.7 (2) N5—N4—C4—C5 −0.1 (3)
O4—Cu1—N1—C2 123.1 (14) C3—N4—C4—C5 −178.0 (2)
O1—Cu1—N1—C2 −145.3 (2) N5—N4—C4—C9 177.9 (3)
O2—Cu1—N1—C2 35.3 (2) C3—N4—C4—C9 −0.1 (5)
O3—Cu1—N1—C2 −54.3 (2) N5—N6—C5—C4 0.4 (3)
C2—N2—N3—C1 −0.8 (3) N5—N6—C5—C6 −178.1 (3)
C2—N2—N3—C3 178.1 (2) N4—C4—C5—N6 −0.2 (3)
C4—N4—N5—N6 0.3 (3) C9—C4—C5—N6 −178.4 (2)
C3—N4—N5—N6 178.5 (2) N4—C4—C5—C6 178.5 (2)
N4—N5—N6—C5 −0.4 (3) C9—C4—C5—C6 0.3 (4)
C2—N1—C1—N3 −0.3 (3) N6—C5—C6—C7 178.1 (3)
Cu1—N1—C1—N3 176.54 (15) C4—C5—C6—C7 −0.3 (4)
N2—N3—C1—N1 0.7 (3) C5—C6—C7—C8 −0.3 (4)
C3—N3—C1—N1 −178.1 (2) C6—C7—C8—C9 1.1 (5)
N3—N2—C2—N1 0.7 (3) C7—C8—C9—C4 −1.0 (4)
C1—N1—C2—N2 −0.3 (3) N4—C4—C9—C8 −177.2 (3)
Cu1—N1—C2—N2 −177.05 (17) C5—C4—C9—C8 0.4 (4)
C4—N4—C3—N3 −106.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1W···O9 0.85 1.82 2.662 (3) 170
O2—H3W···O10i 0.85 1.89 2.723 (2) 165
O9—H9W···N6ii 0.85 2.00 2.836 (3) 168
O10—H11W···O6iii 0.85 1.93 2.771 (2) 170
O10—H11W···S1iii 0.85 2.88 3.6458 (18) 150
O1—H2W···N2iii 0.85 2.16 2.951 (3) 155
O3—H5W···O8iv 0.85 1.99 2.789 (3) 156
O4—H7W···O6v 0.85 1.86 2.697 (2) 170
O4—H7W···S1v 0.85 2.87 3.6842 (19) 162
O9—H10W···O7v 0.85 1.99 2.824 (3) 165
O9—H10W···S1v 0.85 2.80 3.582 (2) 154
O3—H6W···O6v 0.85 2.19 2.943 (3) 148
O2—H4W···O5vi 0.85 1.92 2.766 (2) 174
O2—H4W···S1vi 0.85 2.82 3.571 (2) 148
O4—H8W···O8vi 0.85 1.85 2.702 (2) 175
O4—H8W···S1vi 0.85 2.82 3.5687 (18) 147

Symmetry codes: (i) x+1/2, y−1/2, z; (ii) −x+3/2, −y+1/2, −z+1; (iii) x−1/2, y+1/2, z; (iv) x, y−1, z; (v) x−1/2, y−1/2, z; (vi) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2183).

References

  1. Aromia, G., Barriosa, L. A., Roubeaub, O. & Gameza, P. (2011). Coord. Chem. Rev. 255, 485–564.
  2. Brown, K., Zolezzi, S., Aguirre, P., Venegas-Yazigi, D., Paredes-Garcia, V., Baggio, R., Novak, M. A. & Spodine, E. (2009). Dalton Trans. pp. 1422–1427. [DOI] [PubMed]
  3. Meng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519–1527.
  4. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhou, X.-L., Meng, X.-R., Cheng, W., Hou, H.-W., Tang, M.-S. & Fan, Y.-T. (2007). Inorg. Chim. Acta, 360, 3467–3474.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013511/bv2183sup1.cif

e-67-0m602-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013511/bv2183Isup2.hkl

e-67-0m602-Isup2.hkl (198.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES