Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1058. doi: 10.1107/S1600536811011779

4-({[(E)-Pyridin-3-yl­methyl­idene]amino}­meth­yl)cyclo­hexa­necarb­oxy­lic acid

Muhammad Nisar a, Ihsan Ali a, M Nawaz Tahir b,*, Mughal Qayum c, Inamullah Khan Marwat c
PMCID: PMC3089300  PMID: 21754384

Abstract

The title compound, C14H18N2O2, contains two geometrically different mol­ecules in the asymmetric unit: the basal plane of the cyclo­hexane chair and the N-[pyridin-3-yl­methyl­idene]methanamine moiety are oriented at dihedral angles of 71.77 (7)° and 83.42 (8)°. In the crystal, the mol­ecules are linked by O—H⋯N hydrogen bonds, generating C(13) head-to-tail chains extending along the base vector [103]. R 2 2(26) ring motifs are formed due to the C—H⋯·O inter­actions that link neighbouring chains. There also exist π–π inter­actions [centroid–centroid separation = 3.6925 (12) Å] between the symmetry-related pyridine rings of one of the independent mol­ecules.

Related literature

For related structures, see: Huh & Lee (2007): Shahzadi et al. (2007). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-o1058-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O2

  • M r = 246.31

  • Monoclinic, Inline graphic

  • a = 12.7580 (6) Å

  • b = 11.2504 (6) Å

  • c = 18.8088 (7) Å

  • β = 94.720 (2)°

  • V = 2690.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.34 × 0.25 × 0.22 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.975, T max = 0.983

  • 24311 measured reflections

  • 6635 independent reflections

  • 3908 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.207

  • S = 1.05

  • 6635 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011779/hb5830sup1.cif

e-67-o1058-sup1.cif (34.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011779/hb5830Isup2.hkl

e-67-o1058-Isup2.hkl (318.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.82 1.87 2.682 (2) 171
O3—H3⋯N2ii 0.82 1.89 2.685 (2) 164
C11—H11⋯O2iii 0.93 2.56 3.478 (3) 168
C13—H13⋯O2iv 0.93 2.57 3.316 (3) 137
C27—H27⋯O4v 0.93 2.45 3.280 (3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) has been prepared for the study of biological studies and for the synthesis of metallic complexes.

The crystal structure of (II) i.e., 4-(aminomethyl)cyclohexane-1-carboxylic acid (Shahzadi et al., 2007) and (III) i.e., N,N'-bis(pyridin-3-ylmethylene)cyclohexane-trans-1,4-diamine (Huh & Lee, 2007) have been published which are related to the title compound.

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecules, the basal plane A (C3/C4/C6/C7) of cyclohexane and N-[pyridin-3-ylmethylidene]methanamine moiety B (C8—C14/N1/N2) are almost planar with r.m.s. deviation of 0.014 and 0.034 Å, respectively. The dihedral angle between A/B is 71.77 (7)°. The carboxylate group C (O1/C1/O2) is of course planar. The dihedral angle between A/C and B/C is 30.07 (15)° and 53.36 (15)°, respectively. In second molecules, the basal plane D (C17/C18/C20/C21) of cyclohexane and N-[pyridin-3-ylmethylidene]methanamine moiety E (C22—C28/N3/N4) are also almost planar with r.m.s. deviation of 0.006 and 0.047 Å, respectively. The dihedral angle between D/E is 83.42 (8)°. The carboxylate group F (O3/C15/O4) makes dihedral angle of 30.03 (26)° and 62.40 (14)° with D and E, respectively.

In the crystal, the molecules are stabilized in the form of infinite C(13) polymeric chains due to O—H···.N H-bonds (Table 1, Fig. 2) extending along the base vector [103]. Due to intermolecular H-bonding of C—H···.O type (Table 1, Fig. 2) ring motifs (Bernstein et al., 1995) R22(26) are formed. The molecules are further stabilized by the π···π interaction between the symmetry related pyridine ring (C24/C25/N4/C26/C27/C28) at a distance of 3.6925 (12) Å.

Experimental

A two-necked reaction flask equipped with a reflux condenser, serum cap and a magnet bar was charged with a methanolic solution (40 ml) of tranexamic acid (0.157 g, 1 mmol) and pyridine-3-carboxaldehyde (0.107 g, 1 mmol) at room temperature under nitrogen atmosphere. An excess amount of triethylamine (1 ml) was dropped into the reaction mixture through a serum cap and subsequently the reaction mixture was refluxed for about 20 h. The disappearance of the starting materials was ascertained by TLC (methanol:chloroform). After completion of the reaction, an equivalent quantity of glacial acetic acid was added to the mixture to ensure neutralization of triethylamine. Later on, the crude mixture was allowed to stand overnight which resulted gradually into crystallized material. The solid was collected by suction filtration, washed with diethyl ether and recrystalized from hot methanol to give colourless prisms of (I).

Refinement

The coordinates of H-atoms of hydroxy groups were refined. The H-atoms were positioned geometrically (O—H = 0.82, C–H = 0.93—0.98 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The partial packing, which shows that the molecules form polymeric chains and ring motifs.

Crystal data

C14H18N2O2 F(000) = 1056
Mr = 246.31 Dx = 1.216 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3908 reflections
a = 12.7580 (6) Å θ = 1.9–28.3°
b = 11.2504 (6) Å µ = 0.08 mm1
c = 18.8088 (7) Å T = 296 K
β = 94.720 (2)° Prism, colourless
V = 2690.5 (2) Å3 0.34 × 0.25 × 0.22 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 6635 independent reflections
Radiation source: fine-focus sealed tube 3908 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 7.50 pixels mm-1 θmax = 28.3°, θmin = 1.9°
ω scans h = −15→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −13→14
Tmin = 0.975, Tmax = 0.983 l = −25→21
24311 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1099P)2 + 0.2692P] where P = (Fo2 + 2Fc2)/3
6635 reflections (Δ/σ)max < 0.001
327 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.34542 (12) 0.20319 (19) 0.85240 (7) 0.0774 (7)
O2 0.48692 (13) 0.19021 (19) 0.79343 (8) 0.0852 (8)
N1 0.18226 (12) −0.02615 (17) 0.48003 (7) 0.0500 (6)
N2 0.18135 (14) 0.04146 (17) 0.22905 (8) 0.0552 (6)
C1 0.39348 (17) 0.1868 (2) 0.79392 (10) 0.0542 (7)
C2 0.31681 (15) 0.1641 (2) 0.72955 (9) 0.0496 (7)
C3 0.37171 (17) 0.1506 (2) 0.66075 (9) 0.0607 (8)
C4 0.29250 (17) 0.1273 (2) 0.59682 (9) 0.0577 (8)
C5 0.22042 (14) 0.0229 (2) 0.60795 (8) 0.0465 (6)
C6 0.16868 (15) 0.0366 (2) 0.67770 (9) 0.0558 (7)
C7 0.24956 (15) 0.0556 (2) 0.74099 (9) 0.0529 (7)
C8 0.13716 (15) 0.0072 (2) 0.54600 (9) 0.0543 (7)
C9 0.15528 (15) 0.0323 (2) 0.42457 (9) 0.0482 (6)
C10 0.19220 (14) 0.00271 (18) 0.35472 (8) 0.0429 (6)
C11 0.15284 (15) 0.0644 (2) 0.29463 (9) 0.0509 (7)
C12 0.25168 (16) −0.0442 (2) 0.22215 (10) 0.0552 (7)
C13 0.29540 (16) −0.1099 (2) 0.27881 (10) 0.0547 (7)
C14 0.26511 (15) −0.08693 (19) 0.34589 (9) 0.0493 (6)
O3 0.58371 (14) 0.35232 (17) 0.61410 (7) 0.0740 (7)
O4 0.69327 (16) 0.4490 (2) 0.55311 (8) 0.1074 (8)
N3 0.50418 (13) 0.15359 (17) 0.22618 (8) 0.0547 (6)
N4 0.47454 (15) 0.19104 (17) −0.02788 (8) 0.0584 (6)
C15 0.61952 (15) 0.3860 (2) 0.55416 (9) 0.0493 (7)
C16 0.55551 (15) 0.33872 (19) 0.48915 (9) 0.0470 (6)
C17 0.59449 (19) 0.3837 (2) 0.41964 (10) 0.0636 (8)
C18 0.52518 (18) 0.3364 (2) 0.35534 (10) 0.0600 (8)
C19 0.52023 (17) 0.2027 (2) 0.35542 (9) 0.0535 (7)
C20 0.4829 (2) 0.1581 (3) 0.42478 (11) 0.0726 (9)
C21 0.55003 (19) 0.2050 (2) 0.48971 (10) 0.0622 (8)
C22 0.45076 (17) 0.1549 (2) 0.29154 (9) 0.0612 (8)
C23 0.45152 (16) 0.17579 (19) 0.16841 (9) 0.0485 (6)
C24 0.49662 (15) 0.16380 (18) 0.09908 (9) 0.0460 (6)
C25 0.44008 (17) 0.2013 (2) 0.03678 (9) 0.0522 (7)
C26 0.56779 (19) 0.1403 (2) −0.03228 (11) 0.0623 (8)
C27 0.62979 (18) 0.0993 (2) 0.02655 (12) 0.0650 (8)
C28 0.59361 (16) 0.1115 (2) 0.09252 (10) 0.0564 (7)
H1 0.38897 0.20427 0.88698 0.0929*
H2 0.26983 0.23300 0.72381 0.0596*
H3A 0.41080 0.22255 0.65240 0.0729*
H3B 0.42131 0.08524 0.66588 0.0729*
H4A 0.25009 0.19799 0.58746 0.0692*
H4B 0.33044 0.11217 0.55512 0.0692*
H5 0.26354 −0.04928 0.61141 0.0557*
H6A 0.12781 −0.03406 0.68586 0.0670*
H6B 0.12088 0.10380 0.67389 0.0670*
H7A 0.21368 0.06593 0.78407 0.0634*
H7B 0.29423 −0.01402 0.74715 0.0634*
H8A 0.08785 −0.05372 0.55814 0.0652*
H8B 0.09846 0.08095 0.53848 0.0652*
H9 0.11027 0.09675 0.42786 0.0579*
H11 0.10427 0.12470 0.30007 0.0611*
H12 0.27229 −0.06053 0.17687 0.0663*
H13 0.34461 −0.16888 0.27181 0.0657*
H14 0.29300 −0.13074 0.38490 0.0591*
H3 0.62309 0.37640 0.64768 0.0888*
H16 0.48356 0.36827 0.49122 0.0563*
H17A 0.66650 0.35801 0.41633 0.0763*
H17B 0.59343 0.46992 0.41923 0.0763*
H18A 0.45469 0.36834 0.35640 0.0720*
H18B 0.55315 0.36332 0.31170 0.0720*
H19 0.59168 0.17263 0.35182 0.0642*
H20A 0.48481 0.07191 0.42511 0.0871*
H20B 0.41048 0.18253 0.42792 0.0871*
H21A 0.52030 0.17872 0.53287 0.0747*
H21B 0.62051 0.17260 0.48987 0.0747*
H22A 0.42867 0.07476 0.30202 0.0734*
H22B 0.38817 0.20383 0.28439 0.0734*
H23 0.38208 0.20049 0.16936 0.0582*
H25 0.37442 0.23562 0.04046 0.0626*
H26 0.59272 0.13195 −0.07710 0.0748*
H27 0.69467 0.06412 0.02123 0.0779*
H28 0.63391 0.08479 0.13282 0.0676*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0682 (10) 0.1258 (17) 0.0379 (7) 0.0013 (10) 0.0026 (7) −0.0168 (9)
O2 0.0607 (10) 0.1432 (19) 0.0519 (9) −0.0195 (10) 0.0063 (7) −0.0162 (10)
N1 0.0513 (9) 0.0658 (12) 0.0323 (7) 0.0041 (8) −0.0004 (6) −0.0019 (7)
N2 0.0652 (10) 0.0674 (13) 0.0318 (7) −0.0006 (9) −0.0030 (7) 0.0051 (8)
C1 0.0618 (13) 0.0623 (15) 0.0390 (10) −0.0043 (10) 0.0075 (9) −0.0034 (9)
C2 0.0545 (11) 0.0606 (14) 0.0339 (9) 0.0018 (9) 0.0042 (8) −0.0028 (9)
C3 0.0612 (12) 0.0862 (18) 0.0357 (10) −0.0198 (11) 0.0095 (9) −0.0031 (10)
C4 0.0648 (12) 0.0790 (17) 0.0300 (9) −0.0088 (11) 0.0088 (8) 0.0053 (9)
C5 0.0451 (10) 0.0635 (14) 0.0307 (8) 0.0066 (8) 0.0026 (7) 0.0014 (8)
C6 0.0479 (10) 0.0848 (17) 0.0354 (9) −0.0032 (10) 0.0077 (8) 0.0001 (10)
C7 0.0559 (11) 0.0744 (16) 0.0288 (8) −0.0033 (10) 0.0064 (8) 0.0036 (9)
C8 0.0497 (10) 0.0801 (16) 0.0331 (9) 0.0061 (10) 0.0035 (8) −0.0016 (9)
C9 0.0478 (10) 0.0583 (13) 0.0380 (9) 0.0040 (9) 0.0005 (7) −0.0010 (9)
C10 0.0437 (9) 0.0510 (12) 0.0332 (8) −0.0027 (8) −0.0016 (7) 0.0015 (8)
C11 0.0539 (11) 0.0581 (14) 0.0400 (9) 0.0072 (9) −0.0009 (8) 0.0065 (9)
C12 0.0651 (13) 0.0657 (15) 0.0349 (9) −0.0087 (10) 0.0041 (9) −0.0056 (9)
C13 0.0585 (12) 0.0562 (14) 0.0495 (11) 0.0053 (10) 0.0044 (9) −0.0064 (10)
C14 0.0544 (11) 0.0548 (13) 0.0379 (9) 0.0038 (9) −0.0010 (8) 0.0050 (9)
O3 0.0978 (12) 0.0927 (14) 0.0312 (7) −0.0347 (10) 0.0032 (7) −0.0069 (8)
O4 0.0983 (13) 0.179 (2) 0.0455 (9) −0.0758 (15) 0.0102 (8) −0.0169 (11)
N3 0.0624 (10) 0.0665 (12) 0.0341 (8) −0.0035 (8) −0.0021 (7) −0.0072 (8)
N4 0.0747 (12) 0.0651 (13) 0.0346 (8) −0.0048 (9) −0.0001 (8) −0.0044 (8)
C15 0.0515 (11) 0.0640 (14) 0.0327 (9) −0.0015 (9) 0.0060 (8) −0.0063 (9)
C16 0.0475 (10) 0.0619 (14) 0.0316 (8) −0.0011 (9) 0.0040 (7) −0.0061 (8)
C17 0.0808 (15) 0.0708 (16) 0.0391 (10) −0.0209 (12) 0.0044 (10) −0.0015 (10)
C18 0.0707 (13) 0.0744 (17) 0.0346 (9) −0.0040 (11) 0.0020 (9) 0.0045 (10)
C19 0.0595 (12) 0.0672 (15) 0.0336 (9) −0.0026 (10) 0.0020 (8) −0.0062 (9)
C20 0.1047 (19) 0.0713 (17) 0.0401 (10) −0.0256 (14) −0.0037 (11) 0.0018 (10)
C21 0.0824 (15) 0.0681 (16) 0.0353 (9) −0.0030 (12) −0.0006 (9) 0.0057 (10)
C22 0.0687 (13) 0.0805 (17) 0.0337 (9) −0.0184 (12) 0.0001 (9) −0.0061 (10)
C23 0.0566 (11) 0.0521 (13) 0.0364 (9) 0.0007 (9) 0.0014 (8) −0.0043 (8)
C24 0.0591 (11) 0.0432 (11) 0.0350 (9) −0.0041 (9) −0.0003 (8) −0.0056 (8)
C25 0.0622 (12) 0.0570 (14) 0.0367 (9) 0.0019 (10) −0.0001 (8) −0.0033 (9)
C26 0.0814 (15) 0.0658 (16) 0.0414 (10) −0.0096 (12) 0.0148 (10) −0.0126 (10)
C27 0.0672 (13) 0.0673 (16) 0.0612 (13) 0.0085 (11) 0.0102 (11) −0.0137 (11)
C28 0.0638 (12) 0.0570 (14) 0.0471 (11) 0.0064 (10) −0.0026 (9) −0.0032 (9)

Geometric parameters (Å, °)

O1—C1 1.316 (2) C8—H8A 0.9700
O2—C1 1.194 (3) C8—H8B 0.9700
O1—H1 0.8200 C9—H9 0.9300
O3—C15 1.307 (2) C11—H11 0.9300
O4—C15 1.180 (3) C12—H12 0.9300
O3—H3 0.8200 C13—H13 0.9300
N1—C8 1.459 (2) C14—H14 0.9300
N1—C9 1.257 (2) C15—C16 1.510 (3)
N2—C12 1.330 (3) C16—C17 1.523 (3)
N2—C11 1.340 (2) C16—C21 1.506 (3)
N3—C22 1.454 (2) C17—C18 1.534 (3)
N3—C23 1.255 (2) C18—C19 1.506 (3)
N4—C26 1.328 (3) C19—C20 1.511 (3)
N4—C25 1.332 (2) C19—C22 1.531 (3)
C1—C2 1.514 (3) C20—C21 1.527 (3)
C2—C3 1.529 (3) C23—C24 1.474 (2)
C2—C7 1.518 (3) C24—C25 1.390 (3)
C3—C4 1.528 (3) C24—C28 1.385 (3)
C4—C5 1.517 (3) C26—C27 1.385 (3)
C5—C6 1.524 (2) C27—C28 1.366 (3)
C5—C8 1.521 (2) C16—H16 0.9800
C6—C7 1.525 (3) C17—H17A 0.9700
C9—C10 1.470 (2) C17—H17B 0.9700
C10—C11 1.385 (3) C18—H18A 0.9700
C10—C14 1.391 (3) C18—H18B 0.9700
C12—C13 1.377 (3) C19—H19 0.9800
C13—C14 1.374 (3) C20—H20A 0.9700
C2—H2 0.9800 C20—H20B 0.9700
C3—H3A 0.9700 C21—H21A 0.9700
C3—H3B 0.9700 C21—H21B 0.9700
C4—H4A 0.9700 C22—H22A 0.9700
C4—H4B 0.9700 C22—H22B 0.9700
C5—H5 0.9800 C23—H23 0.9300
C6—H6A 0.9700 C25—H25 0.9300
C6—H6B 0.9700 C26—H26 0.9300
C7—H7B 0.9700 C27—H27 0.9300
C7—H7A 0.9700 C28—H28 0.9300
C1—O1—H1 109.00 C14—C13—H13 121.00
C15—O3—H3 109.00 C10—C14—H14 120.00
C8—N1—C9 118.10 (18) C13—C14—H14 120.00
C11—N2—C12 117.77 (17) O3—C15—C16 113.09 (17)
C22—N3—C23 118.38 (17) O4—C15—C16 125.25 (17)
C25—N4—C26 117.31 (18) O3—C15—O4 121.64 (18)
O1—C1—C2 112.17 (18) C15—C16—C17 112.64 (17)
O1—C1—O2 122.44 (18) C17—C16—C21 110.89 (16)
O2—C1—C2 125.39 (18) C15—C16—C21 111.62 (16)
C3—C2—C7 110.11 (17) C16—C17—C18 110.72 (18)
C1—C2—C3 112.50 (16) C17—C18—C19 111.56 (17)
C1—C2—C7 110.97 (16) C18—C19—C22 111.83 (17)
C2—C3—C4 111.33 (17) C20—C19—C22 110.96 (19)
C3—C4—C5 113.16 (15) C18—C19—C20 110.42 (19)
C4—C5—C8 112.17 (15) C19—C20—C21 112.3 (2)
C4—C5—C6 110.54 (16) C16—C21—C20 111.28 (19)
C6—C5—C8 110.27 (15) N3—C22—C19 112.70 (17)
C5—C6—C7 111.90 (15) N3—C23—C24 121.85 (18)
C2—C7—C6 110.87 (16) C23—C24—C28 122.30 (17)
N1—C8—C5 112.45 (15) C25—C24—C28 117.35 (17)
N1—C9—C10 122.50 (19) C23—C24—C25 120.31 (18)
C11—C10—C14 117.84 (15) N4—C25—C24 123.8 (2)
C9—C10—C14 122.51 (16) N4—C26—C27 123.3 (2)
C9—C10—C11 119.64 (18) C26—C27—C28 118.6 (2)
N2—C11—C10 123.18 (19) C24—C28—C27 119.66 (18)
N2—C12—C13 123.16 (18) C15—C16—H16 107.00
C12—C13—C14 118.89 (19) C17—C16—H16 107.00
C10—C14—C13 119.16 (17) C21—C16—H16 107.00
C1—C2—H2 108.00 C16—C17—H17A 110.00
C3—C2—H2 108.00 C16—C17—H17B 109.00
C7—C2—H2 108.00 C18—C17—H17A 109.00
C4—C3—H3A 109.00 C18—C17—H17B 110.00
C4—C3—H3B 109.00 H17A—C17—H17B 108.00
C2—C3—H3B 109.00 C17—C18—H18A 109.00
C2—C3—H3A 109.00 C17—C18—H18B 109.00
H3A—C3—H3B 108.00 C19—C18—H18A 109.00
C3—C4—H4A 109.00 C19—C18—H18B 109.00
C3—C4—H4B 109.00 H18A—C18—H18B 108.00
C5—C4—H4B 109.00 C18—C19—H19 108.00
C5—C4—H4A 109.00 C20—C19—H19 108.00
H4A—C4—H4B 108.00 C22—C19—H19 108.00
C8—C5—H5 108.00 C19—C20—H20A 109.00
C6—C5—H5 108.00 C19—C20—H20B 109.00
C4—C5—H5 108.00 C21—C20—H20A 109.00
C7—C6—H6A 109.00 C21—C20—H20B 109.00
C5—C6—H6A 109.00 H20A—C20—H20B 108.00
H6A—C6—H6B 108.00 C16—C21—H21A 109.00
C7—C6—H6B 109.00 C16—C21—H21B 109.00
C5—C6—H6B 109.00 C20—C21—H21A 109.00
C2—C7—H7A 109.00 C20—C21—H21B 109.00
C2—C7—H7B 109.00 H21A—C21—H21B 108.00
C6—C7—H7A 109.00 N3—C22—H22A 109.00
C6—C7—H7B 109.00 N3—C22—H22B 109.00
H7A—C7—H7B 108.00 C19—C22—H22A 109.00
C5—C8—H8B 109.00 C19—C22—H22B 109.00
H8A—C8—H8B 108.00 H22A—C22—H22B 108.00
C5—C8—H8A 109.00 N3—C23—H23 119.00
N1—C8—H8B 109.00 C24—C23—H23 119.00
N1—C8—H8A 109.00 N4—C25—H25 118.00
N1—C9—H9 119.00 C24—C25—H25 118.00
C10—C9—H9 119.00 N4—C26—H26 118.00
N2—C11—H11 118.00 C27—C26—H26 118.00
C10—C11—H11 118.00 C26—C27—H27 121.00
N2—C12—H12 118.00 C28—C27—H27 121.00
C13—C12—H12 118.00 C24—C28—H28 120.00
C12—C13—H13 121.00 C27—C28—H28 120.00
C9—N1—C8—C5 −129.8 (2) C11—C10—C14—C13 0.5 (3)
C8—N1—C9—C10 −177.13 (18) C9—C10—C14—C13 179.63 (19)
C12—N2—C11—C10 −0.7 (3) N2—C12—C13—C14 0.3 (3)
C11—N2—C12—C13 0.4 (3) C12—C13—C14—C10 −0.7 (3)
C22—N3—C23—C24 −173.32 (19) O3—C15—C16—C17 177.02 (19)
C23—N3—C22—C19 −144.5 (2) O3—C15—C16—C21 −57.5 (2)
C26—N4—C25—C24 1.0 (3) O4—C15—C16—C17 −1.4 (3)
C25—N4—C26—C27 −0.5 (3) O4—C15—C16—C21 124.1 (3)
O1—C1—C2—C3 177.38 (19) C15—C16—C17—C18 −178.30 (18)
O1—C1—C2—C7 −58.8 (2) C21—C16—C17—C18 55.8 (2)
O2—C1—C2—C3 −2.5 (3) C15—C16—C21—C20 178.56 (17)
O2—C1—C2—C7 121.4 (2) C17—C16—C21—C20 −55.0 (2)
C1—C2—C3—C4 179.77 (18) C16—C17—C18—C19 −56.6 (2)
C1—C2—C7—C6 177.12 (16) C17—C18—C19—C20 55.7 (2)
C3—C2—C7—C6 −57.7 (2) C17—C18—C19—C22 179.75 (17)
C7—C2—C3—C4 55.4 (2) C18—C19—C20—C21 −55.0 (3)
C2—C3—C4—C5 −53.6 (2) C22—C19—C20—C21 −179.5 (2)
C3—C4—C5—C6 52.2 (2) C18—C19—C22—N3 79.5 (2)
C3—C4—C5—C8 175.74 (17) C20—C19—C22—N3 −156.8 (2)
C4—C5—C8—N1 66.0 (2) C19—C20—C21—C16 55.1 (3)
C4—C5—C6—C7 −54.0 (2) N3—C23—C24—C25 −173.0 (2)
C6—C5—C8—N1 −170.34 (18) N3—C23—C24—C28 9.5 (3)
C8—C5—C6—C7 −178.61 (18) C23—C24—C25—N4 −178.5 (2)
C5—C6—C7—C2 57.7 (2) C28—C24—C25—N4 −0.9 (3)
N1—C9—C10—C11 174.7 (2) C23—C24—C28—C27 177.8 (2)
N1—C9—C10—C14 −4.5 (3) C25—C24—C28—C27 0.3 (3)
C9—C10—C11—N2 −178.96 (19) N4—C26—C27—C28 0.0 (4)
C14—C10—C11—N2 0.2 (3) C26—C27—C28—C24 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N4i 0.82 1.87 2.682 (2) 171
O3—H3···N2ii 0.82 1.89 2.685 (2) 164
C11—H11···O2iii 0.93 2.56 3.478 (3) 168
C13—H13···O2iv 0.93 2.57 3.316 (3) 137
C27—H27···O4v 0.93 2.45 3.280 (3) 148

Symmetry codes: (i) x, y, z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1, −y, −z+1; (v) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5830).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244–1248.
  7. Shahzadi, S., Ali, S., Parvez, M., Badshah, A., Ahmed, E. & Malik, A. (2007). Russ. J. Inorg. Chem. 52, 386–393.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011779/hb5830sup1.cif

e-67-o1058-sup1.cif (34.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011779/hb5830Isup2.hkl

e-67-o1058-Isup2.hkl (318.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES