Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1206. doi: 10.1107/S1600536811014322

4-(2-{2-[2-(2-Nitro-1H-imidazol-1-yl)ethoxy]eth­oxy}eth­oxy)benzaldehyde

Shu-Xian Li a,, Da-Hai Zhang a, Hoong-Kun Fun b,*,§, Madhukar Hemamalini b
PMCID: PMC3089305  PMID: 21754505

Abstract

In the mol­ecule of the title compound, C16H19N3O6, the imidazole ring is essentially planar [maximum deviation = 0.002 (2) Å] and forms a dihedral angle of 5.08 (14)° with the nitro group. In the crystal structure, adjacent mol­ecules are connected via inter­molecular C—H⋯O hydrogen bonds into columns parallel to the a axis.

Related literature

For details and applications of nitro­imidazole, see: Abdel-Jalil et al. (2006); Kennedy et al. (2006); Nagasawa et al. (2006); Nunn et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1206-scheme1.jpg

Experimental

Crystal data

  • C16H19N3O6

  • M r = 349.34

  • Orthorhombic, Inline graphic

  • a = 4.4403 (3) Å

  • b = 11.4686 (8) Å

  • c = 31.2763 (19) Å

  • V = 1592.72 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 1.00 × 0.10 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.895, T max = 0.990

  • 11825 measured reflections

  • 2763 independent reflections

  • 2243 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.094

  • S = 1.03

  • 2763 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014322/rz2583sup1.cif

e-67-o1206-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014322/rz2583Isup2.hkl

e-67-o1206-Isup2.hkl (132.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O4i 0.97 2.56 3.335 (3) 137
C10—H10A⋯O4ii 0.97 2.57 3.461 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SXL and DHZ gratefully acknowledge the financial assistance of Handan College. The authors thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Nitroimidazole is an important building block in the design and synthesis of hypoxia makers (Abdel-Jalil et al. 2006; Kennedy et al. 2006, Nagasawa et al., 2006). In a normal cell, the nitroimidazole moiety undergoes reduction to become a potentially reactive species and can be reoxidized in the presence of normal oxygen levels. However in hypoxic tissues, the low oxygen concentration is not able to effectively reoxidize the molecule and this results in more reactive intermediates that bind with the components of hypoxic tissues (Nunn et al., 1995). In an attempt to develop new hypoxic cell radiosensitizers, we present herein the crystal structure of 4-(2-(2-(2-(2-nitro-1H-imidazol-1-yl) ethoxy)-ethoxy)ethoxy)benzaldehyde (I).

In (I), (Fig. 1), the imidazole group is essentially planar, with a maximum deviation of 0.002 (2) Å for atom N2. The nitro group is twisted from the mean plane of imidazole ring with torsion angles O5—N3—C15—N1 = -3.7 (3)° and O6—N3—C15—N1 = 176.7 (2)°. The conformation of the 1-(2-(2-ethoxy)ethoxy)ethyl)propane group is (-)-syn-clinal with respect to the imidazole ring, which is reflected by the torsion angle N1—C12—C11—O3 = -105.5 (2)°. The dihedral angle between the imidazole (N1–N2/C13–C15) ring and the benzene (C1–C6) ring is 38.60 (13)°. Bond distances and angles have normal values (Allen et al., 1987).

The crystal packing (Fig. 2) shows that the molecules are linked by weak intermolecular C9—H9B···O4 and C10—H10A···O4 (Table 1) hydrogen interactions into columns parallel to the a axis.

Experimental

To a solution of the 4-(2-(2-(2-(2-nitro-1H-imidazol-1-yl)ethoxy) ethoxy)ethyl-4-methylbenzenesulfonate (0.600 g, 1.5 mmol) and potassium carbonate (0.569 g, 4.1 mmol) in DMF (20 mL) was added a solution of 4-hydroxybenzaldehyde (0.166 g, 1.4 mmol) in DMF (10 ml) under argon atmosphere. The mixture was stirred at 120°C for 20 h. After concentration on the rotary evaporator under reduced pressure, ethyl acetate (80 ml) was then added to the reaction residue. The content was then washed with water (20 ml × 3), dried (Na2SO4) and the organic layer was evaporated to dryness and subjected to chromatography on silica with EtOAc–hexane (3:1 v/v) to afford the desired compound (I) (0.435 g, yield 89%). Analysis Calcd for C16H19N3O6: C 55.01, H 5.48, N 12.03%; found: C 55.31, H 4.91, N 12.43%. 1H NMR (500 MHz, CDCl3) δ: 3.66 (m, 4H), 3.86 (m, 4H), 4.22 (t, J = 4.5 Hz, 2H), 4.64 (t, J = 4.5 Hz, 2H), 7.04 (d, J = 9.0, 2H), 7.10 (s, 1H), 7.23 (s, 1H), 7.87 (d, J = 9.0 Hz, 2H), 9.91 (s, 1H). Single crystals of X-ray diffraction quality were prepared by the slow diffusion of hexane into a dichloromethane solution of the title compound.

Refinement

All H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, 1735 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. H atoms non involved in hydrogen bonds are omitted.

Crystal data

C16H19N3O6 F(000) = 736
Mr = 349.34 Dx = 1.457 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3196 reflections
a = 4.4403 (3) Å θ = 2.6–27.4°
b = 11.4686 (8) Å µ = 0.11 mm1
c = 31.2763 (19) Å T = 100 K
V = 1592.72 (18) Å3 Needle, colourless
Z = 4 1.00 × 0.10 × 0.09 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2763 independent reflections
Radiation source: fine-focus sealed tube 2243 reflections with I > 2σ(I)
graphite Rint = 0.045
φ and ω scans θmax = 30.2°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→5
Tmin = 0.895, Tmax = 0.990 k = −12→16
11825 measured reflections l = −37→43

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.4321P] where P = (Fo2 + 2Fc2)/3
2763 reflections (Δ/σ)max = 0.001
226 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9164 (4) 0.80126 (13) 0.06764 (4) 0.0200 (4)
O2 1.0360 (4) 0.59396 (12) 0.11489 (4) 0.0195 (3)
O3 0.9292 (4) 0.36579 (13) 0.15473 (4) 0.0219 (4)
O4 0.0201 (4) 1.14948 (13) −0.02814 (5) 0.0258 (4)
O5 0.3451 (4) 0.06021 (15) 0.17441 (5) 0.0295 (4)
O6 0.5051 (5) −0.10825 (14) 0.19678 (5) 0.0339 (5)
N1 0.7409 (5) 0.17301 (15) 0.22943 (5) 0.0195 (4)
N2 0.8668 (5) −0.00344 (17) 0.25495 (6) 0.0243 (5)
N3 0.5073 (5) −0.00129 (17) 0.19754 (5) 0.0243 (4)
C1 0.6176 (6) 0.87874 (18) 0.01331 (7) 0.0193 (5)
H1A 0.6778 0.8169 −0.0039 0.023*
C2 0.4203 (6) 0.96061 (18) −0.00235 (7) 0.0193 (5)
H2A 0.3471 0.9536 −0.0301 0.023*
C3 0.3288 (5) 1.05450 (19) 0.02312 (7) 0.0190 (5)
C4 0.4436 (6) 1.06324 (19) 0.06456 (7) 0.0210 (5)
H4A 0.3840 1.1252 0.0818 0.025*
C5 0.6446 (6) 0.98164 (19) 0.08066 (7) 0.0201 (5)
H5A 0.7222 0.9893 0.1081 0.024*
C6 0.7279 (5) 0.88797 (18) 0.05488 (7) 0.0178 (5)
C7 1.0208 (6) 0.80108 (18) 0.11112 (6) 0.0202 (5)
H7A 0.8515 0.7973 0.1307 0.024*
H7B 1.1339 0.8716 0.1171 0.024*
C8 1.2175 (6) 0.69626 (19) 0.11638 (7) 0.0207 (5)
H8A 1.3665 0.6940 0.0937 0.025*
H8B 1.3226 0.7002 0.1435 0.025*
C9 1.2191 (6) 0.4924 (2) 0.11083 (7) 0.0214 (5)
H9A 1.3631 0.4893 0.1341 0.026*
H9B 1.3299 0.4952 0.0841 0.026*
C10 1.0220 (6) 0.38626 (18) 0.11178 (6) 0.0202 (5)
H10A 0.8471 0.3982 0.0937 0.024*
H10B 1.1322 0.3193 0.1011 0.024*
C11 0.7292 (6) 0.27044 (19) 0.15794 (7) 0.0224 (5)
H11A 0.8336 0.1984 0.1514 0.027*
H11B 0.5644 0.2797 0.1378 0.027*
C12 0.6082 (7) 0.26698 (19) 0.20368 (7) 0.0243 (6)
H12A 0.6493 0.3411 0.2174 0.029*
H12B 0.3914 0.2568 0.2028 0.029*
C13 0.9408 (6) 0.1895 (2) 0.26212 (7) 0.0242 (5)
H13A 1.0129 0.2605 0.2721 0.029*
C14 1.0146 (7) 0.0807 (2) 0.27736 (7) 0.0264 (5)
H14A 1.1469 0.0666 0.2998 0.032*
C15 0.7066 (6) 0.05487 (19) 0.22695 (6) 0.0204 (5)
C16 0.1127 (6) 1.14220 (19) 0.00810 (7) 0.0213 (5)
H16A 0.0418 1.1961 0.0279 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0253 (9) 0.0186 (7) 0.0161 (7) 0.0025 (8) 0.0000 (7) −0.0003 (6)
O2 0.0184 (8) 0.0159 (7) 0.0243 (7) −0.0011 (7) 0.0010 (8) 0.0014 (6)
O3 0.0291 (10) 0.0198 (7) 0.0168 (7) −0.0051 (8) −0.0008 (7) −0.0001 (6)
O4 0.0266 (10) 0.0266 (8) 0.0242 (8) 0.0009 (8) −0.0027 (8) 0.0016 (6)
O5 0.0294 (10) 0.0345 (9) 0.0245 (8) −0.0009 (9) −0.0035 (8) 0.0016 (7)
O6 0.0496 (13) 0.0188 (8) 0.0333 (9) −0.0068 (9) 0.0004 (11) −0.0028 (7)
N1 0.0239 (11) 0.0163 (9) 0.0184 (9) 0.0011 (8) 0.0026 (9) 0.0005 (7)
N2 0.0337 (12) 0.0194 (9) 0.0200 (9) 0.0019 (10) 0.0030 (9) 0.0025 (7)
N3 0.0303 (12) 0.0233 (9) 0.0193 (8) −0.0045 (10) 0.0044 (10) 0.0002 (8)
C1 0.0225 (12) 0.0159 (10) 0.0195 (10) −0.0018 (10) 0.0037 (10) −0.0024 (8)
C2 0.0185 (12) 0.0220 (10) 0.0174 (9) −0.0025 (10) 0.0001 (9) 0.0003 (8)
C3 0.0175 (11) 0.0182 (10) 0.0214 (10) −0.0024 (10) 0.0023 (10) 0.0005 (8)
C4 0.0235 (12) 0.0179 (10) 0.0216 (10) 0.0008 (11) 0.0004 (10) −0.0033 (8)
C5 0.0243 (13) 0.0197 (10) 0.0165 (9) −0.0024 (10) −0.0008 (10) −0.0018 (8)
C6 0.0182 (11) 0.0148 (10) 0.0205 (10) −0.0016 (10) 0.0034 (10) 0.0027 (8)
C7 0.0245 (13) 0.0191 (10) 0.0170 (9) −0.0026 (11) 0.0000 (11) 0.0004 (8)
C8 0.0198 (12) 0.0200 (10) 0.0222 (10) −0.0042 (10) −0.0006 (11) 0.0005 (9)
C9 0.0224 (12) 0.0190 (10) 0.0227 (10) 0.0035 (11) −0.0003 (11) −0.0009 (9)
C10 0.0251 (13) 0.0157 (10) 0.0199 (10) 0.0021 (10) −0.0012 (11) −0.0002 (8)
C11 0.0300 (14) 0.0151 (10) 0.0220 (11) −0.0005 (10) −0.0028 (12) 0.0028 (9)
C12 0.0314 (15) 0.0157 (10) 0.0258 (11) 0.0037 (11) 0.0012 (11) 0.0029 (9)
C13 0.0268 (13) 0.0272 (11) 0.0185 (10) −0.0019 (12) 0.0027 (11) −0.0034 (9)
C14 0.0333 (14) 0.0273 (11) 0.0185 (10) 0.0009 (12) 0.0006 (12) 0.0000 (9)
C15 0.0270 (13) 0.0169 (10) 0.0174 (10) −0.0017 (10) 0.0027 (10) −0.0010 (8)
C16 0.0193 (12) 0.0172 (10) 0.0274 (11) −0.0024 (10) 0.0010 (11) 0.0005 (9)

Geometric parameters (Å, °)

O1—C6 1.360 (3) C4—H4A 0.9300
O1—C7 1.437 (2) C5—C6 1.393 (3)
O2—C8 1.424 (3) C5—H5A 0.9300
O2—C9 1.426 (3) C7—C8 1.495 (3)
O3—C11 1.412 (3) C7—H7A 0.9700
O3—C10 1.425 (2) C7—H7B 0.9700
O4—C16 1.209 (3) C8—H8A 0.9700
O5—N3 1.241 (3) C8—H8B 0.9700
O6—N3 1.227 (2) C9—C10 1.500 (3)
N1—C15 1.366 (3) C9—H9A 0.9700
N1—C13 1.367 (3) C9—H9B 0.9700
N1—C12 1.469 (3) C10—H10A 0.9700
N2—C15 1.312 (3) C10—H10B 0.9700
N2—C14 1.361 (3) C11—C12 1.529 (3)
N3—C15 1.429 (3) C11—H11A 0.9700
C1—C2 1.374 (3) C11—H11B 0.9700
C1—C6 1.393 (3) C12—H12A 0.9700
C1—H1A 0.9300 C12—H12B 0.9700
C2—C3 1.400 (3) C13—C14 1.375 (3)
C2—H2A 0.9300 C13—H13A 0.9300
C3—C4 1.396 (3) C14—H14A 0.9300
C3—C16 1.467 (3) C16—H16A 0.9300
C4—C5 1.388 (3)
C6—O1—C7 118.52 (17) C7—C8—H8B 109.8
C8—O2—C9 110.66 (17) H8A—C8—H8B 108.3
C11—O3—C10 112.10 (16) O2—C9—C10 109.2 (2)
C15—N1—C13 104.60 (19) O2—C9—H9A 109.8
C15—N1—C12 130.7 (2) C10—C9—H9A 109.8
C13—N1—C12 124.70 (19) O2—C9—H9B 109.8
C15—N2—C14 104.12 (19) C10—C9—H9B 109.8
O6—N3—O5 123.5 (2) H9A—C9—H9B 108.3
O6—N3—C15 117.9 (2) O3—C10—C9 108.74 (17)
O5—N3—C15 118.57 (18) O3—C10—H10A 109.9
C2—C1—C6 120.3 (2) C9—C10—H10A 109.9
C2—C1—H1A 119.8 O3—C10—H10B 109.9
C6—C1—H1A 119.8 C9—C10—H10B 109.9
C1—C2—C3 120.5 (2) H10A—C10—H10B 108.3
C1—C2—H2A 119.7 O3—C11—C12 107.91 (18)
C3—C2—H2A 119.7 O3—C11—H11A 110.1
C4—C3—C2 118.5 (2) C12—C11—H11A 110.1
C4—C3—C16 119.1 (2) O3—C11—H11B 110.1
C2—C3—C16 122.4 (2) C12—C11—H11B 110.1
C5—C4—C3 121.5 (2) H11A—C11—H11B 108.4
C5—C4—H4A 119.2 N1—C12—C11 113.03 (19)
C3—C4—H4A 119.2 N1—C12—H12A 109.0
C4—C5—C6 118.7 (2) C11—C12—H12A 109.0
C4—C5—H5A 120.6 N1—C12—H12B 109.0
C6—C5—H5A 120.6 C11—C12—H12B 109.0
O1—C6—C5 123.9 (2) H12A—C12—H12B 107.8
O1—C6—C1 115.77 (19) N1—C13—C14 106.8 (2)
C5—C6—C1 120.3 (2) N1—C13—H13A 126.6
O1—C7—C8 107.08 (17) C14—C13—H13A 126.6
O1—C7—H7A 110.3 N2—C14—C13 110.5 (2)
C8—C7—H7A 110.3 N2—C14—H14A 124.8
O1—C7—H7B 110.3 C13—C14—H14A 124.8
C8—C7—H7B 110.3 N2—C15—N1 114.0 (2)
H7A—C7—H7B 108.6 N2—C15—N3 122.39 (19)
O2—C8—C7 109.2 (2) N1—C15—N3 123.6 (2)
O2—C8—H8A 109.8 O4—C16—C3 124.7 (2)
C7—C8—H8A 109.8 O4—C16—H16A 117.6
O2—C8—H8B 109.9 C3—C16—H16A 117.6
C6—C1—C2—C3 0.3 (3) C15—N1—C12—C11 −69.6 (3)
C1—C2—C3—C4 0.3 (3) C13—N1—C12—C11 108.9 (2)
C1—C2—C3—C16 −178.4 (2) O3—C11—C12—N1 −105.5 (2)
C2—C3—C4—C5 0.1 (3) C15—N1—C13—C14 0.0 (3)
C16—C3—C4—C5 178.9 (2) C12—N1—C13—C14 −178.9 (2)
C3—C4—C5—C6 −1.2 (3) C15—N2—C14—C13 −0.3 (3)
C7—O1—C6—C5 4.4 (3) N1—C13—C14—N2 0.2 (3)
C7—O1—C6—C1 −175.6 (2) C14—N2—C15—N1 0.3 (3)
C4—C5—C6—O1 −178.2 (2) C14—N2—C15—N3 −177.8 (2)
C4—C5—C6—C1 1.9 (3) C13—N1—C15—N2 −0.1 (3)
C2—C1—C6—O1 178.6 (2) C12—N1—C15—N2 178.6 (2)
C2—C1—C6—C5 −1.4 (3) C13—N1—C15—N3 177.9 (2)
C6—O1—C7—C8 179.05 (18) C12—N1—C15—N3 −3.3 (4)
C9—O2—C8—C7 167.89 (17) O6—N3—C15—N2 −5.4 (3)
O1—C7—C8—O2 −70.0 (2) O5—N3—C15—N2 174.2 (2)
C8—O2—C9—C10 176.92 (17) O6—N3—C15—N1 176.7 (2)
C11—O3—C10—C9 176.86 (19) O5—N3—C15—N1 −3.7 (3)
O2—C9—C10—O3 −75.8 (2) C4—C3—C16—O4 172.9 (2)
C10—O3—C11—C12 −171.84 (19) C2—C3—C16—O4 −8.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···O4i 0.97 2.56 3.335 (3) 137.
C10—H10A···O4ii 0.97 2.57 3.461 (3) 152.

Symmetry codes: (i) x+3/2, −y+3/2, −z; (ii) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2583).

References

  1. Abdel-Jalil, R. J. M., Übele, M., Ehrlichmann, W., Voelter, W. & Machulla, H. J. (2006). J. Radioanal. Nucl. Chem. 267, 557–560.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Kennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974–1982. [DOI] [PubMed]
  6. Nagasawa, H., Uto, Y., Kirk, K. L. & Hori, H. (2006). Biol. Pharm. Bull. 29, 2335–2342. [DOI] [PubMed]
  7. Nunn, A., Linder, K. & Strauss, W. H. (1995). J. Nucl. Med. pp. 264–280.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014322/rz2583sup1.cif

e-67-o1206-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014322/rz2583Isup2.hkl

e-67-o1206-Isup2.hkl (132.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES