Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1282. doi: 10.1107/S1600536811015625

2-[2-(1H-Imidazol-3-ium-5-yl)eth­yl]-3-(pyridin-2-yl)-2H-imidazo[1,5-a]pyridin-4-ium bis­(perchlorate)

Murat Türkyılmaz a, Yakup Baran b, Namık Özdemir c,*
PMCID: PMC3089310  PMID: 21754563

Abstract

In the title mol­ecular salt, C17H17N5 +·2ClO4 , the dihedral angles between the fused-ring system and the pendant five- and six-membered heterocyclic rings are 6.4 (2) and 41.29 (19)°, respectively. The O atoms of both perchlorate anions are disordered over two sets of sites with occupancy ratios of 0.614 (8):0.386 (8) and 0.591 (7):0.409 (7). An intra­molecular C—H⋯N contact occurs in the cation. In the crystal, the components are linked by N—H⋯O and C—H⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid separation = 3.642 (3) Å].

Related literature

For background to the biological properties of imidazopyridine compounds, see: Kaminski & Doweyko (1997); Sanfillipo et al. (1988); Lhassani et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o1282-scheme1.jpg

Experimental

Crystal data

  • C17H17N5 2+·2ClO4

  • M r = 490.26

  • Monoclinic, Inline graphic

  • a = 15.044 (6) Å

  • b = 11.303 (4) Å

  • c = 12.783 (5) Å

  • β = 108.009 (15)°

  • V = 2067.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 273 K

  • 0.35 × 0.20 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • 19199 measured reflections

  • 4507 independent reflections

  • 2540 reflections with I > 2σ(I)

  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.214

  • S = 1.07

  • 4507 reflections

  • 363 parameters

  • 198 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015625/hb5862sup1.cif

e-67-o1282-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015625/hb5862Isup2.hkl

e-67-o1282-Isup2.hkl (216.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015625/hb5862Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N3 0.97 2.48 3.001 (6) 113
C16—H16⋯O1A 0.93 2.44 3.351 (8) 167
N4—H4N⋯O7A 0.86 1.97 2.807 (10) 165
N5—H5N⋯O4Ai 0.86 2.18 2.927 (16) 145
C11—H11⋯O6Aii 0.93 2.46 3.224 (9) 139
C6—H6⋯O5Aiii 0.93 2.60 3.331 (17) 136
C5—H5⋯O6Aiv 0.93 2.43 3.139 (8) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support received from the Scientific and Technological Research Council of Turkey research program 1001 grant for 104 T389 is gratefully acknowledged

supplementary crystallographic information

Comment

Imidazopyridine derivatives are of great importance because of their remarkable biological properties. For example, gastric antisecretory (Kaminski & Doweyko, 1997), local anesthetic (Sanfillipo et al., 1988) and antiviral (Lhassani et al., 1999) properties of imidazo[1,2-a]pyridine derivatives have been described.

The title salt comprises a double protonated 2-[2-(1H-imidazol-3-ium-5-yl)ethyl]-3-(pyridin-2-yl)-2H-imidazo [1,5-a]pyridin-4-ium cation and two perchlorate anion (Fig. 1). The interatomic distances and angles in the title salt show no anomalies.

The molecular structure of the title compound, (I), contains one intramolecular C—H···N contact leading to the formation of a six-membered ring with graph-set descriptor S(6) (Bernstein et al., 1995). In the crystal structure, intermolecular C—H···O and N—H···O type hydrogen bonds and π—π stacking interactions between the (N2/C2—C6) and (N3/C8—C12) pyridine rings interconnect the ions into a three-dimensional supramolecular structure (Table 1).

Experimental

Histamine-HCl (8 mmol, 1.18 g) was dissolved in argon saturated methanol and the solution was placed on a magnetic stirrer at room temperature. 2-Pyridinecarboxaldehyde (10 mmol, 1.08 g) was dissolved in argon saturated methanol and this solution was added to the histamine solution slowly. The final solution was left on a magnetic stirrer and temperature was raised to 333 K and the solution was left there for 24 h. Solvent volume was reduced and the solution was left for crystallization. After several days, brown blocks of (I) were separated, which were collected and dried.

Refinement

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.86, 0.93 and 0.97 Å for NH, CH and CH2 groups, respectively. The displacement parameters of the H atoms were constrained as Uiso(H)= 1.2Ueq. In the compound, the O atoms of the two perchlorate anions show positional disorder and the refined site-occupancy factors of the disordered parts, viz. (O1A—O4A/O1B—O4B) and (O5A—O8A/O5B—O8B), are 0.614 (8)/0.386 (8)% and 0.591 (7)/0.409 (7)%, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 30% probability displacement ellipsoids. For the sake of clarity, only H atoms involved in hydrogen bonding have been included and only the major parts of disordered fragments are drawn. Hydrogen bonds are indicated by broken lines.

Crystal data

C17H17N52+·2ClO4 F(000) = 1008
Mr = 490.26 Dx = 1.575 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 11579 reflections
a = 15.044 (6) Å θ = 3.1–29.6°
b = 11.303 (4) Å µ = 0.37 mm1
c = 12.783 (5) Å T = 273 K
β = 108.009 (15)° Block, brown
V = 2067.1 (13) Å3 0.35 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 2540 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.083
graphite θmax = 27.0°, θmin = 3.1°
Detector resolution: 10.00 pixels mm-1 h = −19→19
ω scans k = −14→14
19199 measured reflections l = −16→16
4507 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.8991P] where P = (Fo2 + 2Fc2)/3
4507 reflections (Δ/σ)max < 0.001
363 parameters Δρmax = 0.45 e Å3
198 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.04647 (8) −0.10009 (10) 0.30270 (8) 0.0598 (4)
Cl2 0.38314 (10) 0.18832 (12) 0.36810 (11) 0.0791 (4)
O1A 0.1400 (4) −0.0618 (7) 0.3141 (7) 0.0894 (19) 0.614 (8)
O2A −0.0092 (7) −0.0565 (8) 0.2027 (5) 0.115 (2) 0.614 (8)
O3A 0.0469 (7) −0.2260 (4) 0.3022 (9) 0.091 (2) 0.614 (8)
O4A 0.0210 (9) −0.0453 (14) 0.3907 (6) 0.069 (2) 0.614 (8)
O1B 0.0926 (10) −0.0210 (9) 0.2511 (10) 0.096 (2) 0.386 (8)
O2B −0.0448 (5) −0.1148 (12) 0.2321 (8) 0.088 (3) 0.386 (8)
O3B 0.0868 (11) −0.2140 (7) 0.3301 (15) 0.092 (3) 0.386 (8)
O4B 0.0434 (15) −0.064 (2) 0.4091 (8) 0.064 (3) 0.386 (8)
O5A 0.4484 (9) 0.1176 (9) 0.4445 (8) 0.114 (3) 0.591 (7)
O6A 0.3768 (6) 0.2058 (7) 0.2528 (5) 0.113 (2) 0.591 (7)
O7A 0.3632 (7) 0.2974 (6) 0.4153 (7) 0.089 (2) 0.591 (7)
O8A 0.2969 (5) 0.1162 (7) 0.3466 (6) 0.0921 (19) 0.591 (7)
O5B 0.4416 (12) 0.0902 (12) 0.4024 (12) 0.105 (3) 0.409 (7)
O6B 0.4497 (7) 0.2597 (8) 0.3319 (10) 0.108 (3) 0.409 (7)
O7B 0.3793 (11) 0.2623 (10) 0.4594 (8) 0.089 (3) 0.409 (7)
O8B 0.2861 (6) 0.1717 (13) 0.3009 (12) 0.123 (3) 0.409 (7)
N1 0.2084 (2) 0.6878 (3) 0.5373 (3) 0.0568 (9)
N2 0.2744 (2) 0.8592 (3) 0.5682 (3) 0.0525 (8)
N3 0.3643 (3) 0.6138 (3) 0.4591 (3) 0.0678 (10)
N4 0.1981 (3) 0.2840 (3) 0.4732 (3) 0.0602 (9)
H4N 0.2431 0.2966 0.4465 0.072*
N5 0.0837 (3) 0.2016 (3) 0.5074 (3) 0.0703 (11)
H5N 0.0406 0.1515 0.5070 0.084*
C1 0.1678 (3) 0.7453 (4) 0.6032 (3) 0.0633 (12)
H1 0.1215 0.7153 0.6299 0.076*
C2 0.2065 (3) 0.8542 (4) 0.6235 (3) 0.0586 (11)
C3 0.1957 (4) 0.9540 (5) 0.6846 (4) 0.0705 (13)
H3 0.1515 0.9533 0.7218 0.085*
C4 0.2487 (4) 1.0493 (5) 0.6890 (4) 0.0786 (15)
H4 0.2398 1.1161 0.7270 0.094*
C5 0.3187 (4) 1.0491 (4) 0.6361 (4) 0.0753 (14)
H5 0.3571 1.1151 0.6429 0.090*
C6 0.3313 (3) 0.9565 (4) 0.5763 (3) 0.0616 (11)
H6 0.3771 0.9580 0.5414 0.074*
C7 0.2737 (3) 0.7553 (3) 0.5146 (3) 0.0519 (10)
C8 0.3311 (3) 0.7255 (4) 0.4459 (3) 0.0527 (10)
C9 0.3495 (3) 0.8053 (4) 0.3742 (4) 0.0624 (11)
H9 0.3223 0.8800 0.3651 0.075*
C10 0.4094 (4) 0.7724 (5) 0.3157 (4) 0.0763 (14)
H10 0.4256 0.8254 0.2691 0.092*
C11 0.4437 (4) 0.6597 (6) 0.3288 (5) 0.0821 (16)
H11 0.4839 0.6347 0.2907 0.099*
C12 0.4184 (4) 0.5831 (5) 0.3986 (4) 0.0814 (15)
H12 0.4404 0.5057 0.4037 0.098*
C13 0.1788 (3) 0.5677 (4) 0.4936 (4) 0.0613 (11)
H13A 0.2000 0.5529 0.4304 0.074*
H13B 0.1112 0.5629 0.4697 0.074*
C14 0.2189 (3) 0.4744 (4) 0.5806 (4) 0.0643 (12)
H14A 0.2856 0.4673 0.5932 0.077*
H14B 0.2091 0.4979 0.6492 0.077*
C15 0.1729 (3) 0.3587 (4) 0.5444 (3) 0.0554 (10)
C16 0.1433 (3) 0.1910 (4) 0.4521 (4) 0.0674 (12)
H16 0.1463 0.1285 0.4060 0.081*
C17 0.1007 (3) 0.3047 (4) 0.5659 (4) 0.0660 (12)
H17 0.0683 0.3325 0.6122 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0669 (7) 0.0630 (7) 0.0559 (6) 0.0019 (5) 0.0283 (5) −0.0003 (5)
Cl2 0.0943 (9) 0.0704 (8) 0.0883 (9) 0.0208 (7) 0.0509 (8) 0.0218 (6)
O1A 0.080 (3) 0.106 (4) 0.101 (4) −0.012 (3) 0.056 (3) −0.012 (4)
O2A 0.137 (5) 0.124 (5) 0.068 (3) 0.020 (4) 0.006 (3) 0.017 (3)
O3A 0.116 (6) 0.064 (3) 0.094 (5) −0.010 (3) 0.036 (5) −0.007 (3)
O4A 0.072 (6) 0.074 (5) 0.072 (3) −0.001 (4) 0.040 (4) −0.005 (4)
O1B 0.122 (5) 0.102 (5) 0.083 (5) −0.009 (4) 0.059 (4) 0.011 (4)
O2B 0.090 (4) 0.108 (6) 0.057 (4) 0.004 (4) 0.010 (3) −0.016 (4)
O3B 0.107 (7) 0.069 (4) 0.090 (6) 0.020 (4) 0.014 (6) −0.004 (4)
O4B 0.071 (7) 0.072 (6) 0.050 (3) −0.007 (5) 0.023 (4) −0.003 (4)
O5A 0.106 (4) 0.092 (5) 0.122 (6) 0.031 (4) 0.005 (5) 0.007 (4)
O6A 0.149 (5) 0.109 (5) 0.102 (3) 0.040 (4) 0.071 (4) 0.024 (3)
O7A 0.098 (5) 0.061 (3) 0.117 (5) 0.006 (3) 0.047 (5) 0.009 (3)
O8A 0.098 (3) 0.090 (4) 0.084 (4) 0.007 (3) 0.022 (3) −0.004 (3)
O5B 0.111 (5) 0.082 (5) 0.124 (7) 0.034 (5) 0.038 (6) 0.013 (5)
O6B 0.139 (5) 0.098 (5) 0.118 (6) 0.011 (4) 0.087 (4) 0.020 (5)
O7B 0.091 (5) 0.083 (6) 0.106 (5) −0.001 (5) 0.050 (5) −0.003 (4)
O8B 0.117 (4) 0.115 (7) 0.114 (6) 0.018 (4) 0.002 (5) −0.001 (5)
N1 0.060 (2) 0.056 (2) 0.054 (2) −0.0036 (17) 0.0177 (18) 0.0058 (16)
N2 0.061 (2) 0.052 (2) 0.0438 (18) 0.0022 (16) 0.0154 (16) 0.0031 (15)
N3 0.073 (3) 0.061 (2) 0.066 (2) 0.0037 (19) 0.017 (2) −0.0068 (19)
N4 0.065 (2) 0.058 (2) 0.062 (2) −0.0012 (18) 0.0260 (19) 0.0045 (18)
N5 0.060 (2) 0.057 (2) 0.094 (3) −0.0071 (18) 0.024 (2) 0.015 (2)
C1 0.062 (3) 0.077 (3) 0.051 (2) 0.002 (2) 0.019 (2) 0.011 (2)
C2 0.058 (3) 0.073 (3) 0.043 (2) 0.012 (2) 0.013 (2) 0.011 (2)
C3 0.077 (3) 0.086 (4) 0.049 (2) 0.019 (3) 0.019 (2) 0.000 (2)
C4 0.099 (4) 0.071 (3) 0.060 (3) 0.018 (3) 0.017 (3) −0.008 (2)
C5 0.098 (4) 0.054 (3) 0.063 (3) 0.000 (3) 0.009 (3) −0.005 (2)
C6 0.078 (3) 0.050 (2) 0.054 (2) −0.007 (2) 0.017 (2) 0.000 (2)
C7 0.057 (2) 0.049 (2) 0.048 (2) −0.0030 (19) 0.0136 (19) 0.0069 (18)
C8 0.054 (2) 0.053 (2) 0.049 (2) −0.0041 (19) 0.0132 (19) −0.0070 (19)
C9 0.065 (3) 0.071 (3) 0.053 (2) −0.007 (2) 0.022 (2) −0.008 (2)
C10 0.077 (3) 0.092 (4) 0.063 (3) −0.027 (3) 0.025 (3) −0.010 (3)
C11 0.063 (3) 0.105 (5) 0.085 (4) −0.014 (3) 0.033 (3) −0.031 (3)
C12 0.071 (3) 0.084 (4) 0.086 (4) 0.007 (3) 0.020 (3) −0.026 (3)
C13 0.067 (3) 0.055 (3) 0.059 (3) −0.014 (2) 0.014 (2) 0.007 (2)
C14 0.074 (3) 0.056 (3) 0.061 (3) −0.003 (2) 0.017 (2) 0.007 (2)
C15 0.058 (3) 0.056 (2) 0.054 (2) 0.000 (2) 0.020 (2) 0.006 (2)
C16 0.072 (3) 0.053 (3) 0.073 (3) −0.002 (2) 0.017 (3) 0.001 (2)
C17 0.066 (3) 0.065 (3) 0.075 (3) 0.004 (2) 0.034 (3) 0.008 (2)

Geometric parameters (Å, °)

Cl1—O2A 1.385 (5) N5—H5N 0.8600
Cl1—O2B 1.401 (6) C1—C2 1.352 (6)
Cl1—O1B 1.414 (6) C1—H1 0.9300
Cl1—O3B 1.420 (6) C2—C3 1.410 (6)
Cl1—O3A 1.423 (5) C3—C4 1.330 (7)
Cl1—O4A 1.436 (4) C3—H3 0.9300
Cl1—O4B 1.436 (5) C4—C5 1.417 (7)
Cl1—O1A 1.435 (5) C4—H4 0.9300
Cl2—O5B 1.400 (6) C5—C6 1.343 (6)
Cl2—O5A 1.401 (5) C5—H5 0.9300
Cl2—O7A 1.444 (5) C6—H6 0.9300
Cl2—O7B 1.452 (6) C7—C8 1.448 (5)
Cl2—O8B 1.459 (7) C8—C9 1.374 (6)
Cl2—O6A 1.461 (5) C9—C10 1.388 (6)
Cl2—O6B 1.468 (6) C9—H9 0.9300
Cl2—O8A 1.484 (6) C10—C11 1.365 (8)
N1—C7 1.344 (5) C10—H10 0.9300
N1—C1 1.350 (5) C11—C12 1.379 (8)
N1—C13 1.483 (5) C11—H11 0.9300
N2—C7 1.358 (5) C12—H12 0.9300
N2—C6 1.377 (5) C13—C14 1.515 (6)
N2—C2 1.411 (5) C13—H13A 0.9700
N3—C12 1.331 (6) C13—H13B 0.9700
N3—C8 1.349 (5) C14—C15 1.486 (6)
N4—C16 1.312 (6) C14—H14A 0.9700
N4—C15 1.377 (5) C14—H14B 0.9700
N4—H4N 0.8600 C15—C17 1.347 (6)
N5—C16 1.307 (6) C16—H16 0.9300
N5—C17 1.366 (6) C17—H17 0.9300
O2B—Cl1—O1B 107.4 (7) C3—C4—H4 119.9
O2B—Cl1—O3B 108.1 (7) C5—C4—H4 119.9
O1B—Cl1—O3B 117.0 (9) C6—C5—C4 121.9 (5)
O2A—Cl1—O3A 110.7 (5) C6—C5—H5 119.1
O2A—Cl1—O4A 109.8 (6) C4—C5—H5 119.1
O3A—Cl1—O4A 116.0 (8) C5—C6—N2 118.2 (4)
O2B—Cl1—O4B 109.4 (9) C5—C6—H6 120.9
O1B—Cl1—O4B 115.2 (12) N2—C6—H6 120.9
O3B—Cl1—O4B 99.4 (12) N1—C7—N2 105.9 (4)
O2A—Cl1—O1A 106.3 (5) N1—C7—C8 127.7 (4)
O3A—Cl1—O1A 107.2 (5) N2—C7—C8 126.4 (4)
O4A—Cl1—O1A 106.3 (7) N3—C8—C9 123.7 (4)
O5A—Cl2—O7A 112.8 (5) N3—C8—C7 114.1 (4)
O5B—Cl2—O7B 112.5 (8) C9—C8—C7 122.1 (4)
O5B—Cl2—O8B 120.0 (10) C8—C9—C10 118.8 (5)
O7B—Cl2—O8B 105.4 (9) C8—C9—H9 120.6
O5A—Cl2—O6A 126.4 (6) C10—C9—H9 120.6
O7A—Cl2—O6A 110.4 (4) C11—C10—C9 117.9 (5)
O5B—Cl2—O6B 96.3 (10) C11—C10—H10 121.0
O7B—Cl2—O6B 97.9 (7) C9—C10—H10 121.0
O8B—Cl2—O6B 122.8 (8) C10—C11—C12 119.7 (5)
O5A—Cl2—O8A 101.5 (7) C10—C11—H11 120.2
O7A—Cl2—O8A 105.3 (5) C12—C11—H11 120.2
O6A—Cl2—O8A 96.1 (5) N3—C12—C11 123.6 (5)
C7—N1—C1 111.3 (4) N3—C12—H12 118.2
C7—N1—C13 126.3 (4) C11—C12—H12 118.2
C1—N1—C13 122.3 (4) N1—C13—C14 110.9 (3)
C7—N2—C6 129.5 (4) N1—C13—H13A 109.5
C7—N2—C2 108.9 (4) C14—C13—H13A 109.5
C6—N2—C2 121.5 (4) N1—C13—H13B 109.5
C12—N3—C8 116.1 (4) C14—C13—H13B 109.5
C16—N4—C15 110.1 (4) H13A—C13—H13B 108.1
C16—N4—H4N 125.0 C15—C14—C13 110.1 (4)
C15—N4—H4N 125.0 C15—C14—H14A 109.6
C16—N5—C17 109.3 (4) C13—C14—H14A 109.6
C16—N5—H5N 125.3 C15—C14—H14B 109.6
C17—N5—H5N 125.3 C13—C14—H14B 109.6
N1—C1—C2 107.9 (4) H14A—C14—H14B 108.2
N1—C1—H1 126.1 C17—C15—N4 105.1 (4)
C2—C1—H1 126.1 C17—C15—C14 131.5 (4)
C1—C2—C3 135.9 (5) N4—C15—C14 123.3 (4)
C1—C2—N2 106.0 (4) N5—C16—N4 107.9 (4)
C3—C2—N2 118.1 (4) N5—C16—H16 126.0
C4—C3—C2 120.1 (5) N4—C16—H16 126.0
C4—C3—H3 120.0 C15—C17—N5 107.5 (4)
C2—C3—H3 120.0 C15—C17—H17 126.2
C3—C4—C5 120.2 (5) N5—C17—H17 126.2
C7—N1—C1—C2 0.8 (5) C12—N3—C8—C7 −179.2 (4)
C13—N1—C1—C2 −176.6 (4) N1—C7—C8—N3 −41.5 (6)
N1—C1—C2—C3 −179.7 (5) N2—C7—C8—N3 139.5 (4)
N1—C1—C2—N2 −1.2 (4) N1—C7—C8—C9 138.6 (4)
C7—N2—C2—C1 1.3 (4) N2—C7—C8—C9 −40.4 (6)
C6—N2—C2—C1 −176.5 (4) N3—C8—C9—C10 −3.5 (7)
C7—N2—C2—C3 −179.9 (4) C7—C8—C9—C10 176.4 (4)
C6—N2—C2—C3 2.4 (6) C8—C9—C10—C11 3.0 (7)
C1—C2—C3—C4 178.3 (5) C9—C10—C11—C12 −0.1 (7)
N2—C2—C3—C4 −0.1 (6) C8—N3—C12—C11 2.4 (7)
C2—C3—C4—C5 −2.5 (7) C10—C11—C12—N3 −2.8 (8)
C3—C4—C5—C6 3.0 (8) C7—N1—C13—C14 104.7 (5)
C4—C5—C6—N2 −0.7 (7) C1—N1—C13—C14 −78.3 (5)
C7—N2—C6—C5 −179.2 (4) N1—C13—C14—C15 167.9 (4)
C2—N2—C6—C5 −2.0 (6) C16—N4—C15—C17 0.7 (5)
C1—N1—C7—N2 0.1 (5) C16—N4—C15—C14 −177.3 (4)
C13—N1—C7—N2 177.3 (3) C13—C14—C15—C17 −96.1 (6)
C1—N1—C7—C8 −179.1 (4) C13—C14—C15—N4 81.3 (5)
C13—N1—C7—C8 −1.9 (7) C17—N5—C16—N4 0.0 (5)
C6—N2—C7—N1 176.7 (4) C15—N4—C16—N5 −0.4 (5)
C2—N2—C7—N1 −0.8 (4) N4—C15—C17—N5 −0.7 (5)
C6—N2—C7—C8 −4.1 (7) C14—C15—C17—N5 177.1 (4)
C2—N2—C7—C8 178.4 (4) C16—N5—C17—C15 0.5 (5)
C12—N3—C8—C9 0.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13A···N3 0.97 2.48 3.001 (6) 113
C16—H16···O1A 0.93 2.44 3.351 (8) 167
N4—H4N···O7A 0.86 1.97 2.807 (10) 165
N5—H5N···O4Ai 0.86 2.18 2.927 (16) 145
C11—H11···O6Aii 0.93 2.46 3.224 (9) 139
C6—H6···O5Aiii 0.93 2.60 3.331 (17) 136
C5—H5···O6Aiv 0.93 2.43 3.139 (8) 133

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5862).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Kaminski, J. J. & Doweyko, A. M. (1997). J. Med. Chem. 40, 427–436. [DOI] [PubMed]
  5. Lhassani, M., Chavignon, O., Chezal, J.-M., Teulade, J.-C., Chapat, J.-P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271–274. [DOI] [PubMed]
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sanfillipo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015625/hb5862sup1.cif

e-67-o1282-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015625/hb5862Isup2.hkl

e-67-o1282-Isup2.hkl (216.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015625/hb5862Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES