Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):m645–m646. doi: 10.1107/S1600536811014978

Bis{μ3-cis-N-(2-carboxyl­ato-5-chloro­phen­yl)-N′-[3-(dimethyl­amino)­prop­yl]oxamidato(3−)}bis­(perchlorato-κO)bis­(N,N,N′,N′-tetra­methyl­ethylene­diamine)­tetra­copper(II)

Yanlong Sun a, Xuelian Xu a,*
PMCID: PMC3089313  PMID: 21754352

Abstract

The title complex, [Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2], is a tetra­nuclear copper(II) complex lying about an inversion center wherein a cis-oxamide group is coordinated to both Cu atoms with bite angles of 84.45 (6) and 84.08 (10)°. Both Cu atoms adopt distorted square-pyramidal coordination geometries. The apical position of one Cu atom is occupied by an O atom from a perchlorate group, with a Cu—O bond length of 2.519 (7) Å, while the apical site of the other Cu atom is occupied by a carboxyl­ate O atom with a Cu—O distance of 2.281 (3) Å. The Cu atoms bridged by oxamide and carboxyl­ate-group bridges are separated by 5.204 (6) and 5.603 (2) Å, respectively. The crystal structure is consolidated by weak inter­molecular C—H⋯O inter­actions. Two perchlorate O atoms are disordered with unequal site-occupancy factors.

Related literature

For the preparation of the Na[Cu(oxbm)] ligand, see: Tao et al. (2003). For a related crystal structure, see: Zang et al. (2003).graphic file with name e-67-0m645-scheme1.jpg

Experimental

Crystal data

  • [Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2]

  • M r = 1334.96

  • Monoclinic, Inline graphic

  • a = 12.5750 (13) Å

  • b = 16.4137 (19) Å

  • c = 14.1080 (15) Å

  • β = 113.988 (2)°

  • V = 2660.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.464, T max = 0.708

  • 12993 measured reflections

  • 4682 independent reflections

  • 3287 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.133

  • S = 1.00

  • 4682 reflections

  • 359 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014978/pv2408sup1.cif

e-67-0m645-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014978/pv2408Isup2.hkl

e-67-0m645-Isup2.hkl (229.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O7i 0.93 2.58 3.26 (3) 129
C16—H16A⋯O8ii 0.97 2.46 3.41 (3) 168
C20—H20C⋯O2iii 0.96 2.54 3.139 (6) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the financial support of the Ocean University of China, Qingdao.

supplementary crystallographic information

Comment

The title compound, (Fig. 1), is a tetranuclear copper(II) complex lying about inversion centers wherein cis-oxamido group is coordinated to Cu1 and Cu2 in an usual mode with the bite angles of 84.45 (6) and 84.08 (10)°, respectively. Both Cu1 and Cu2 atoms adopt distorted square-pyramidal coordination geometries. The basal plane around Cu1 is defined by N1, N2, N3 and O1, with maximum displacement of 0.1050 (11) Å for N1 and the Cu1 lies 0.1298 (12) Å out of this plane. The apical position of Cu1 is occupied by O5 with Cu1—O5 bond length 2.519 (7) Å. Cu2 atom is coordinated by exo-cis oxygen atoms of the oxamido ligand (O3 and O4) and the nitrogen atoms (N4 and N5) of tetramethylethylenediamine ligand thus completing the basal plane, from which the maximum deviation of an atom (O4) being 0.1233 (8) Å; Cu2 is displaced from this basal plane by 0.1835 (6) Å. The apical site of Cu2 is occupied by a carboxyl oxygen atom (O2i where i = -x+1, -y+1, -z+1) with Cu2—O2i distance 2.281 (3) Å. The Cu—N bond lenghts in the title complex lie in the range 1.953 (3)-2.066 (3)Å and are close to the corresponding bond lenghts reported in a copper complex (Zang et al., 2003). The crystal structure is consolidated by weak intermolecular interactions of type C—H···O (Table 1).

Experimental

The Na[Cu(oxbm)] ligand, Na[Cu(oxamido-N-[3-N,N'-dimethylaminopropyl]-N'-(4-Chloro) -benzoato)], was prepared according to Tao et al., (2003). A methanol (10 ml) solution of Cu(ClO4)2.6H2O (0.742 g, 2 mmol) was added dropwise into a water solution (10 ml) of Na[Cu(oxbm)] (0.854 g, 2 mmol) with continuous stirring. The mixture was stirred for an hour and then tetramethylethylenediamine (0.0224 g, 2 mmol) in methanol (10 ml) was added dropwise. The solution obtained was stirred at 333 K for 10 h. The resulting solution was then filtered and the filtrate was allowed to stand at room temperature for three weeks to give well shaped green crystals of the title complex suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2) and 0.96 (CH3)Å] and constrained to ride on their parent atoms with Uiso(H) =1.2(1.5 for methyl)Ueq(C). Two O-atoms of the perchlorate were disordered and their site occupancy factors were determined at earlier stages of refinement and were fixed at these occupancy factors during the final stages of refinements.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% displacement ellipsoids (H atoms omitted for clarity). The symmetry code "A" in the atomic labels: -x+1, -y+1, -z+1.

Crystal data

[Cu4(C14H15ClN3O4)2(ClO4)2(C6H16N2)2] F(000) = 1368
Mr = 1334.96 Dx = 1.666 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4604 reflections
a = 12.5750 (13) Å θ = 2.2–27.7°
b = 16.4137 (19) Å µ = 1.85 mm1
c = 14.1080 (15) Å T = 298 K
β = 113.988 (2)° Block, green
V = 2660.4 (5) Å3 0.49 × 0.48 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 4682 independent reflections
Radiation source: fine-focus sealed tube 3287 reflections with I > 2σ(I)
graphite Rint = 0.052
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→14
Tmin = 0.464, Tmax = 0.708 k = −19→19
12993 measured reflections l = −16→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.072P)2 + 1.0008P] where P = (Fo2 + 2Fc2)/3
4682 reflections (Δ/σ)max = 0.001
359 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −0.76 e Å3

Special details

Experimental. Yield, 58%; analysis, calculated for C40H62Cl4N10O16Cu4: C 35.99, H, 4.68; N 10.49%; found: C 35.96, H 4.69, N, 10.51%.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.28269 (4) 0.45069 (3) 0.33563 (4) 0.03039 (18)
Cu2 0.62990 (4) 0.24708 (3) 0.46234 (4) 0.03051 (18)
Cl1 0.79310 (12) 0.57100 (8) 0.29681 (13) 0.0599 (4)
Cl2 0.21665 (12) 0.38831 (7) 0.07826 (11) 0.0475 (3)
N1 0.4498 (3) 0.45347 (19) 0.3604 (3) 0.0243 (8)
N2 0.3096 (3) 0.3342 (2) 0.3638 (3) 0.0317 (9)
N3 0.1119 (3) 0.4486 (2) 0.3195 (3) 0.0315 (9)
N4 0.7940 (3) 0.2373 (2) 0.4680 (3) 0.0369 (10)
N5 0.6464 (3) 0.1307 (2) 0.5127 (3) 0.0324 (9)
O1 0.2790 (3) 0.56694 (18) 0.3491 (3) 0.0464 (9)
O2 0.3375 (3) 0.69384 (17) 0.3819 (3) 0.0403 (8)
O3 0.6008 (2) 0.35845 (17) 0.4019 (3) 0.0357 (8)
O4 0.4616 (3) 0.24340 (16) 0.4152 (3) 0.0345 (8)
O5 0.2228 (3) 0.4578 (2) 0.1424 (3) 0.0554 (10)
O6 0.1517 (4) 0.3248 (2) 0.0975 (4) 0.0762 (13)
O7 0.338 (3) 0.357 (2) 0.123 (4) 0.068 (5) 0.57
O8 0.190 (7) 0.4086 (18) −0.022 (3) 0.082 (12) 0.57
O7' 0.322 (5) 0.363 (3) 0.081 (9) 0.076 (13) 0.43
O8' 0.143 (7) 0.415 (3) −0.028 (4) 0.101 (13) 0.43
C1 0.3547 (4) 0.6219 (3) 0.3635 (3) 0.0316 (10)
C2 0.4679 (4) 0.6027 (2) 0.3540 (3) 0.0281 (10)
C3 0.5099 (3) 0.5233 (2) 0.3491 (3) 0.0253 (9)
C4 0.6111 (4) 0.5162 (3) 0.3307 (4) 0.0329 (11)
H4 0.6391 0.4649 0.3245 0.039*
C5 0.6689 (4) 0.5847 (3) 0.3218 (4) 0.0373 (11)
C6 0.6330 (4) 0.6620 (3) 0.3304 (4) 0.0405 (12)
H6 0.6746 0.7074 0.3256 0.049*
C7 0.5320 (4) 0.6699 (3) 0.3468 (4) 0.0348 (11)
H7 0.5061 0.7218 0.3531 0.042*
C8 0.4971 (4) 0.3808 (2) 0.3830 (3) 0.0274 (10)
C9 0.4166 (4) 0.3140 (2) 0.3888 (3) 0.0283 (10)
C10 0.2293 (4) 0.2683 (3) 0.3600 (5) 0.0467 (14)
H10A 0.2696 0.2291 0.4144 0.056*
H10B 0.2047 0.2404 0.2939 0.056*
C11 0.1226 (4) 0.2997 (3) 0.3737 (5) 0.0480 (13)
H11A 0.0699 0.2546 0.3659 0.058*
H11B 0.1466 0.3208 0.4435 0.058*
C12 0.0582 (4) 0.3660 (3) 0.2967 (4) 0.0430 (12)
H12A 0.0517 0.3496 0.2286 0.052*
H12B −0.0201 0.3698 0.2937 0.052*
C13 0.0402 (4) 0.5036 (3) 0.2348 (4) 0.0489 (14)
H13A 0.0374 0.4834 0.1700 0.073*
H13B 0.0738 0.5572 0.2472 0.073*
H13C −0.0373 0.5061 0.2322 0.073*
C14 0.1120 (5) 0.4791 (4) 0.4192 (5) 0.0569 (15)
H14A 0.1497 0.5313 0.4353 0.085*
H14B 0.1530 0.4413 0.4738 0.085*
H14C 0.0332 0.4844 0.4126 0.085*
C15 0.8213 (5) 0.1484 (3) 0.4798 (5) 0.0523 (14)
H15A 0.9049 0.1404 0.5088 0.063*
H15B 0.7881 0.1220 0.4125 0.063*
C16 0.7717 (4) 0.1115 (3) 0.5501 (5) 0.0500 (14)
H16A 0.7823 0.0528 0.5524 0.060*
H16B 0.8127 0.1326 0.6199 0.060*
C17 0.7999 (6) 0.2666 (4) 0.3708 (6) 0.077 (2)
H17A 0.7737 0.3221 0.3585 0.115*
H17B 0.7510 0.2332 0.3139 0.115*
H17C 0.8787 0.2634 0.3772 0.115*
C18 0.8777 (4) 0.2825 (4) 0.5567 (5) 0.0631 (17)
H18A 0.9546 0.2755 0.5593 0.095*
H18B 0.8753 0.2622 0.6197 0.095*
H18C 0.8577 0.3393 0.5493 0.095*
C19 0.5771 (4) 0.0761 (3) 0.4248 (4) 0.0449 (13)
H19A 0.6019 0.0830 0.3694 0.067*
H19B 0.4961 0.0897 0.4007 0.067*
H19C 0.5887 0.0205 0.4478 0.067*
C20 0.6059 (5) 0.1191 (3) 0.5964 (4) 0.0523 (14)
H20A 0.6208 0.0640 0.6212 0.078*
H20B 0.5239 0.1298 0.5700 0.078*
H20C 0.6467 0.1559 0.6523 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0262 (3) 0.0263 (3) 0.0462 (4) 0.0015 (2) 0.0225 (3) −0.0014 (2)
Cu2 0.0285 (3) 0.0249 (3) 0.0457 (4) 0.0043 (2) 0.0227 (3) 0.0056 (2)
Cl1 0.0542 (9) 0.0542 (8) 0.1007 (12) 0.0039 (7) 0.0617 (8) 0.0139 (8)
Cl2 0.0699 (9) 0.0377 (7) 0.0526 (8) −0.0002 (6) 0.0430 (7) 0.0007 (6)
N1 0.0249 (19) 0.0217 (18) 0.031 (2) 0.0019 (15) 0.0163 (16) 0.0022 (15)
N2 0.027 (2) 0.0250 (18) 0.050 (2) −0.0018 (16) 0.0230 (18) 0.0045 (17)
N3 0.0229 (19) 0.038 (2) 0.041 (2) 0.0017 (16) 0.0203 (17) −0.0030 (17)
N4 0.032 (2) 0.034 (2) 0.054 (3) 0.0090 (17) 0.026 (2) 0.0059 (19)
N5 0.039 (2) 0.0243 (18) 0.036 (2) 0.0013 (17) 0.0172 (18) 0.0004 (16)
O1 0.0350 (19) 0.0281 (17) 0.087 (3) 0.0014 (15) 0.0353 (18) −0.0093 (17)
O2 0.056 (2) 0.0250 (16) 0.057 (2) 0.0041 (15) 0.0403 (18) −0.0023 (15)
O3 0.0270 (17) 0.0291 (16) 0.059 (2) 0.0048 (13) 0.0256 (15) 0.0134 (15)
O4 0.0277 (17) 0.0231 (16) 0.055 (2) 0.0021 (13) 0.0191 (15) 0.0086 (14)
O5 0.081 (3) 0.046 (2) 0.051 (2) 0.0051 (19) 0.039 (2) −0.0035 (17)
O6 0.088 (3) 0.060 (3) 0.100 (4) −0.019 (2) 0.058 (3) −0.002 (2)
O7 0.081 (9) 0.068 (7) 0.082 (15) 0.019 (7) 0.061 (11) 0.005 (10)
O8 0.16 (3) 0.049 (8) 0.048 (14) −0.002 (12) 0.056 (16) 0.000 (7)
O7' 0.074 (16) 0.071 (12) 0.11 (4) −0.003 (10) 0.07 (2) −0.012 (19)
O8' 0.13 (3) 0.082 (14) 0.055 (13) 0.019 (15) −0.002 (14) 0.016 (9)
C1 0.042 (3) 0.030 (2) 0.032 (3) 0.001 (2) 0.025 (2) 0.000 (2)
C2 0.036 (3) 0.030 (2) 0.026 (2) 0.000 (2) 0.020 (2) −0.0025 (18)
C3 0.029 (2) 0.026 (2) 0.027 (2) −0.0018 (18) 0.0173 (19) 0.0029 (18)
C4 0.036 (3) 0.030 (2) 0.042 (3) 0.005 (2) 0.025 (2) 0.009 (2)
C5 0.036 (3) 0.043 (3) 0.046 (3) 0.002 (2) 0.030 (2) 0.009 (2)
C6 0.048 (3) 0.035 (3) 0.050 (3) −0.005 (2) 0.033 (3) 0.006 (2)
C7 0.044 (3) 0.025 (2) 0.046 (3) −0.001 (2) 0.028 (2) 0.000 (2)
C8 0.029 (2) 0.028 (2) 0.031 (2) 0.0000 (19) 0.019 (2) 0.0015 (18)
C9 0.030 (2) 0.028 (2) 0.036 (3) 0.0021 (19) 0.022 (2) 0.0031 (19)
C10 0.035 (3) 0.037 (3) 0.077 (4) −0.007 (2) 0.031 (3) 0.006 (3)
C11 0.036 (3) 0.047 (3) 0.072 (4) −0.006 (2) 0.032 (3) 0.007 (3)
C12 0.024 (2) 0.050 (3) 0.057 (3) −0.004 (2) 0.019 (2) −0.003 (3)
C13 0.033 (3) 0.056 (3) 0.065 (4) 0.012 (2) 0.027 (3) 0.015 (3)
C14 0.056 (4) 0.070 (4) 0.058 (4) 0.004 (3) 0.038 (3) −0.012 (3)
C15 0.043 (3) 0.042 (3) 0.081 (4) 0.009 (2) 0.035 (3) −0.006 (3)
C16 0.039 (3) 0.035 (3) 0.069 (4) 0.009 (2) 0.015 (3) 0.010 (3)
C17 0.066 (4) 0.095 (5) 0.094 (5) 0.017 (4) 0.059 (4) 0.027 (4)
C18 0.036 (3) 0.055 (3) 0.102 (5) −0.003 (3) 0.032 (3) −0.015 (3)
C19 0.049 (3) 0.033 (3) 0.052 (3) −0.008 (2) 0.020 (3) −0.004 (2)
C20 0.080 (4) 0.034 (3) 0.058 (4) 0.001 (3) 0.043 (3) 0.007 (2)

Geometric parameters (Å, °)

Cu1—O1 1.920 (3) C4—C5 1.373 (6)
Cu1—N2 1.953 (3) C4—H4 0.9300
Cu1—N1 1.986 (3) C5—C6 1.368 (6)
Cu1—N3 2.066 (3) C6—C7 1.385 (7)
Cu1—O5 2.518 (4) C6—H6 0.9300
Cu2—O4 1.944 (3) C7—H7 0.9300
Cu2—O3 1.987 (3) C8—C9 1.516 (6)
Cu2—N5 2.020 (3) C10—C11 1.521 (7)
Cu2—N4 2.039 (4) C10—H10A 0.9700
Cu2—O2i 2.281 (3) C10—H10B 0.9700
Cl1—C5 1.750 (5) C11—C12 1.519 (7)
Cl2—O8 1.36 (4) C11—H11A 0.9700
Cl2—O7' 1.37 (4) C11—H11B 0.9700
Cl2—O6 1.417 (4) C12—H12A 0.9700
Cl2—O5 1.439 (4) C12—H12B 0.9700
Cl2—O8' 1.47 (4) C13—H13A 0.9600
Cl2—O7 1.48 (3) C13—H13B 0.9600
N1—C8 1.313 (5) C13—H13C 0.9600
N1—C3 1.416 (5) C14—H14A 0.9600
N2—C9 1.288 (5) C14—H14B 0.9600
N2—C10 1.467 (5) C14—H14C 0.9600
N3—C13 1.476 (6) C15—C16 1.497 (8)
N3—C12 1.490 (6) C15—H15A 0.9700
N3—C14 1.492 (6) C15—H15B 0.9700
N4—C18 1.468 (7) C16—H16A 0.9700
N4—C17 1.482 (7) C16—H16B 0.9700
N4—C15 1.493 (6) C17—H17A 0.9600
N5—C20 1.475 (6) C17—H17B 0.9600
N5—C16 1.478 (6) C17—H17C 0.9600
N5—C19 1.490 (6) C18—H18A 0.9600
O1—C1 1.266 (5) C18—H18B 0.9600
O2—C1 1.247 (5) C18—H18C 0.9600
O2—Cu2i 2.281 (3) C19—H19A 0.9600
O3—C8 1.275 (5) C19—H19B 0.9600
O4—C9 1.278 (5) C19—H19C 0.9600
C1—C2 1.517 (6) C20—H20A 0.9600
C2—C7 1.394 (6) C20—H20B 0.9600
C2—C3 1.418 (6) C20—H20C 0.9600
C3—C4 1.404 (6)
O1—Cu1—N2 164.01 (16) C5—C6—H6 121.3
O1—Cu1—N1 91.51 (13) C7—C6—H6 121.3
N2—Cu1—N1 84.45 (13) C6—C7—C2 122.3 (4)
O1—Cu1—N3 87.77 (13) C6—C7—H7 118.8
N2—Cu1—N3 95.33 (14) C2—C7—H7 118.8
N1—Cu1—N3 176.48 (14) O3—C8—N1 129.5 (4)
O1—Cu1—O5 93.01 (14) O3—C8—C9 115.4 (4)
N2—Cu1—O5 102.50 (14) N1—C8—C9 115.1 (4)
N1—Cu1—O5 91.09 (14) O4—C9—N2 127.1 (4)
N3—Cu1—O5 92.39 (14) O4—C9—C8 116.4 (4)
O4—Cu2—O3 84.08 (11) N2—C9—C8 116.4 (4)
O4—Cu2—N5 91.89 (13) N2—C10—C11 112.0 (4)
O3—Cu2—N5 174.85 (13) N2—C10—H10A 109.2
O4—Cu2—N4 162.63 (15) C11—C10—H10A 109.2
O3—Cu2—N4 95.52 (13) N2—C10—H10B 109.2
N5—Cu2—N4 87.36 (15) C11—C10—H10B 109.2
O4—Cu2—O2i 95.00 (13) H10A—C10—H10B 107.9
O3—Cu2—O2i 87.23 (12) C12—C11—C10 113.2 (4)
N5—Cu2—O2i 96.35 (13) C12—C11—H11A 108.9
N4—Cu2—O2i 102.33 (14) C10—C11—H11A 108.9
O8—Cl2—O7' 86 (2) C12—C11—H11B 108.9
O8—Cl2—O6 118 (2) C10—C11—H11B 108.9
O7'—Cl2—O6 113 (3) H11A—C11—H11B 107.7
O8—Cl2—O5 112.9 (13) N3—C12—C11 115.8 (4)
O7'—Cl2—O5 114 (3) N3—C12—H12A 108.3
O6—Cl2—O5 110.6 (3) C11—C12—H12A 108.3
O7'—Cl2—O8' 109.0 (19) N3—C12—H12B 108.3
O6—Cl2—O8' 104 (3) C11—C12—H12B 108.3
O5—Cl2—O8' 105 (3) H12A—C12—H12B 107.4
O8—Cl2—O7 107.8 (17) N3—C13—H13A 109.5
O6—Cl2—O7 103.5 (14) N3—C13—H13B 109.5
O5—Cl2—O7 102.8 (17) H13A—C13—H13B 109.5
O8'—Cl2—O7 131 (3) N3—C13—H13C 109.5
C8—N1—C3 123.6 (4) H13A—C13—H13C 109.5
C8—N1—Cu1 111.3 (3) H13B—C13—H13C 109.5
C3—N1—Cu1 125.0 (3) N3—C14—H14A 109.5
C9—N2—C10 116.6 (4) N3—C14—H14B 109.5
C9—N2—Cu1 112.5 (3) H14A—C14—H14B 109.5
C10—N2—Cu1 130.9 (3) N3—C14—H14C 109.5
C13—N3—C12 107.9 (4) H14A—C14—H14C 109.5
C13—N3—C14 108.9 (4) H14B—C14—H14C 109.5
C12—N3—C14 109.6 (4) N4—C15—C16 109.4 (4)
C13—N3—Cu1 110.2 (3) N4—C15—H15A 109.8
C12—N3—Cu1 113.5 (3) C16—C15—H15A 109.8
C14—N3—Cu1 106.8 (3) N4—C15—H15B 109.8
C18—N4—C17 109.7 (5) C16—C15—H15B 109.8
C18—N4—C15 110.3 (4) H15A—C15—H15B 108.3
C17—N4—C15 109.0 (4) N5—C16—C15 110.3 (4)
C18—N4—Cu2 110.8 (3) N5—C16—H16A 109.6
C17—N4—Cu2 111.6 (3) C15—C16—H16A 109.6
C15—N4—Cu2 105.3 (3) N5—C16—H16B 109.6
C20—N5—C16 110.6 (4) C15—C16—H16B 109.6
C20—N5—C19 108.2 (4) H16A—C16—H16B 108.1
C16—N5—C19 110.3 (4) N4—C17—H17A 109.5
C20—N5—Cu2 112.6 (3) N4—C17—H17B 109.5
C16—N5—Cu2 105.6 (3) H17A—C17—H17B 109.5
C19—N5—Cu2 109.5 (3) N4—C17—H17C 109.5
C1—O1—Cu1 132.6 (3) H17A—C17—H17C 109.5
C1—O2—Cu2i 128.7 (3) H17B—C17—H17C 109.5
C8—O3—Cu2 110.4 (3) N4—C18—H18A 109.5
C9—O4—Cu2 111.3 (3) N4—C18—H18B 109.5
Cl2—O5—Cu1 124.0 (2) H18A—C18—H18B 109.5
O2—C1—O1 121.7 (4) N4—C18—H18C 109.5
O2—C1—C2 117.6 (4) H18A—C18—H18C 109.5
O1—C1—C2 120.6 (4) H18B—C18—H18C 109.5
C7—C2—C3 119.1 (4) N5—C19—H19A 109.5
C7—C2—C1 115.7 (4) N5—C19—H19B 109.5
C3—C2—C1 125.2 (4) H19A—C19—H19B 109.5
C4—C3—N1 121.3 (4) N5—C19—H19C 109.5
C4—C3—C2 117.9 (4) H19A—C19—H19C 109.5
N1—C3—C2 120.8 (4) H19B—C19—H19C 109.5
C5—C4—C3 120.2 (4) N5—C20—H20A 109.5
C5—C4—H4 119.9 N5—C20—H20B 109.5
C3—C4—H4 119.9 H20A—C20—H20B 109.5
C6—C5—C4 123.0 (4) N5—C20—H20C 109.5
C6—C5—Cl1 119.5 (4) H20A—C20—H20C 109.5
C4—C5—Cl1 117.5 (4) H20B—C20—H20C 109.5
C5—C6—C7 117.4 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O7ii 0.93 2.58 3.26 (3) 129
C16—H16A···O8iii 0.97 2.46 3.41 (3) 168
C20—H20C···O2i 0.96 2.54 3.139 (6) 121
C4—H4···O3 0.93 2.21 2.799 (5) 120
C7—H7···O2 0.93 2.36 2.714 (6) 102
C13—H13A···O5 0.96 2.55 3.158 (7) 121
C13—H13B···O1 0.96 2.39 2.960 (6) 118
C14—H14A···O1 0.96 2.46 3.026 (7) 117
C17—H17A···O3 0.96 2.56 3.103 (7) 116
C19—H19B···O4 0.96 2.58 3.084 (6) 113

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2408).

References

  1. Bruker, (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Tao, R. J., Zang, S. Q., Cheng, Y. X., Wang, Q. L., Hu, N. H., Niu, J. Y. & Liao, D. Z. (2003). Polyhedron, 22, 2911–2916.
  6. Zang, S. Q., Tao, R. J., Wang, Q. L., Hu, N. H., Cheng, Y. X., Niu, J. Y. & Liao, D. Z. (2003). Inorg. Chem. 42, 761–766. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014978/pv2408sup1.cif

e-67-0m645-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014978/pv2408Isup2.hkl

e-67-0m645-Isup2.hkl (229.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES