Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1197. doi: 10.1107/S1600536811014425

Bis(4-amino-2-chloro­phen­yl) disulfide

Jun-Mei Tang a,*, Zhi-Qiang Feng b, Wei Cheng a
PMCID: PMC3089315  PMID: 21754499

Abstract

The title compound, C12H10Cl2N2S2, features an S—S bond [2.0671 (16) Å] that bridges two 4-amino-2-chloro­phenyl rings with a C—S—S—C torsion angle of −84.2 (2)°. The two benzene rings are twisted with respect to each other at a dihedral angle of 39.9 (2)°. Inter­molecular N—H⋯S hydrogen bonding is present in the crystal structure.

Related literature

For the application of the title compound, see: Crowley (1964). For S—S bond distances, see: Allen et al. (1991). For similar C—S—S—C torsion angles in disulfide compounds, see: Korp & Bernal (1984); Poveteva & Zvonkova (1975).graphic file with name e-67-o1197-scheme1.jpg

Experimental

Crystal data

  • C12H10Cl2N2S2

  • M r = 317.24

  • Monoclinic, Inline graphic

  • a = 6.6360 (13) Å

  • b = 14.907 (3) Å

  • c = 13.588 (3) Å

  • β = 95.09 (3)°

  • V = 1338.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.800, T max = 0.940

  • 2606 measured reflections

  • 1331 independent reflections

  • 1221 reflections with I > 2σ(I)

  • R int = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.088

  • S = 1.00

  • 1331 reflections

  • 163 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), 110 Friedel parirs

  • Flack parameter: 0.09 (11)

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014425/xu5174sup1.cif

e-67-o1197-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014425/xu5174Isup2.hkl

e-67-o1197-Isup2.hkl (128KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.80 3.611 (5) 158
N2—H2A⋯S2ii 0.86 2.86 3.684 (5) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for data collection.

supplementary crystallographic information

Comment

The title compound has been used as fungicide and mildew-proofing agent (Crowley, 1964). We herein report its crystal structure. The S-S distance, 2.0670 (13)Å, is normal and falls within the range of 2.018-2.099Å found for the acyclic disulfides in the Cambridge Structural Database (Allen et al., 1991). The torsion angle C-S-S-C of 84.2 (2)° is close to the 85.0° found in diphenyldisulfide (Korp & Bernal, 1984) and lower than the 101.7° found in 4-amino-4'-nitrodiphenyl disulfide (Poveteva & Zvonkova, 1975). The intermolecular N–H···S hydrogen bonds may be effective in the stabilization of the crystal structure.

Experimental

The aqueous solution (20 ml) of 3,4-dichloronitrobenzene (19.2 g, 0.1 mol) and sodium sulfhydrate (28.5 g, 0.22 mol) was refluxed for 16 h, and then filtered. The title compound was obtained from the filtrate. The single crystals were obtained by recrystallization from an ethanol solution after 5 d.

Refinement

H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N). As a half of reciprocal space diffraction data were collected only using a four-circle diffractometer, Friedel pair coverage is low in this determination.

Figures

Fig. 1.

Fig. 1.

The structure of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H10Cl2N2S2 F(000) = 648
Mr = 317.24 Dx = 1.574 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 25 reflections
a = 6.6360 (13) Å θ = 10–14°
b = 14.907 (3) Å µ = 0.78 mm1
c = 13.588 (3) Å T = 296 K
β = 95.09 (3)° Block, yellow
V = 1338.9 (5) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1221 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
graphite θmax = 25.4°, θmin = 2.7°
ω/2θ scans h = 0→7
Absorption correction: ψ scan (North et al., 1968) k = −17→17
Tmin = 0.800, Tmax = 0.940 l = −16→16
2606 measured reflections 3 standard reflections every 200 reflections
1331 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
1331 reflections Δρmax = 0.19 e Å3
163 parameters Δρmin = −0.22 e Å3
2 restraints Absolute structure: Flack (1983), 110 Friedel parirs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.09 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.28662 (15) 0.23231 (7) 0.80302 (8) 0.0442 (3)
Cl1 −0.1503 (2) 0.18083 (8) 0.87818 (12) 0.0609 (4)
N1 −0.3017 (9) 0.5116 (3) 0.9000 (3) 0.0681 (14)
H1A −0.2710 0.5674 0.8950 0.082*
H1B −0.4135 0.4965 0.9229 0.082*
C1 −0.0811 (7) 0.2917 (3) 0.8603 (3) 0.0380 (9)
Cl2 −0.2000 (2) 0.26890 (7) 0.57856 (11) 0.0586 (4)
S2 0.26156 (17) 0.21357 (8) 0.65170 (9) 0.0441 (3)
N2 −0.3804 (7) −0.0596 (3) 0.5629 (3) 0.0525 (10)
H2A −0.3514 −0.1157 0.5684 0.063*
H2B −0.5012 −0.0431 0.5426 0.063*
C2 −0.2194 (8) 0.3561 (3) 0.8835 (3) 0.0431 (10)
H2C −0.3415 0.3397 0.9070 0.052*
C3 −0.1716 (8) 0.4459 (3) 0.8708 (3) 0.0453 (11)
C4 0.0098 (8) 0.4693 (3) 0.8332 (3) 0.0455 (11)
H4A 0.0401 0.5292 0.8226 0.055*
C5 0.1417 (8) 0.4043 (3) 0.8121 (3) 0.0425 (10)
H5A 0.2634 0.4208 0.7881 0.051*
C6 0.1012 (6) 0.3126 (3) 0.8252 (3) 0.0358 (9)
C7 0.0675 (7) 0.1343 (3) 0.6287 (3) 0.0364 (9)
C8 0.1075 (7) 0.0430 (3) 0.6402 (3) 0.0418 (10)
H8A 0.2376 0.0250 0.6627 0.050*
C9 −0.0379 (8) −0.0212 (3) 0.6193 (3) 0.0464 (11)
H9A −0.0047 −0.0815 0.6277 0.056*
C10 −0.2349 (7) 0.0029 (3) 0.5857 (3) 0.0379 (10)
C11 −0.2776 (7) 0.0940 (3) 0.5730 (3) 0.0371 (9)
H11A −0.4068 0.1122 0.5490 0.044*
C12 −0.1295 (7) 0.1569 (3) 0.5957 (3) 0.0377 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0341 (6) 0.0425 (6) 0.0543 (6) 0.0054 (5) −0.0052 (5) −0.0064 (5)
Cl1 0.0460 (6) 0.0332 (5) 0.1040 (10) −0.0052 (5) 0.0090 (6) 0.0041 (6)
N1 0.088 (4) 0.049 (2) 0.071 (3) 0.026 (3) 0.027 (3) 0.007 (2)
C1 0.036 (2) 0.031 (2) 0.046 (2) 0.0004 (18) −0.0038 (19) −0.0030 (17)
Cl2 0.0485 (7) 0.0276 (5) 0.0974 (10) 0.0017 (5) −0.0065 (6) 0.0012 (6)
S2 0.0369 (6) 0.0427 (6) 0.0538 (6) −0.0042 (5) 0.0115 (5) −0.0047 (5)
N2 0.057 (2) 0.0300 (19) 0.069 (3) −0.0092 (18) −0.001 (2) 0.0023 (18)
C2 0.038 (2) 0.044 (2) 0.048 (2) 0.003 (2) 0.0039 (19) 0.003 (2)
C3 0.060 (3) 0.039 (2) 0.036 (2) 0.011 (2) 0.000 (2) 0.0018 (19)
C4 0.065 (3) 0.030 (2) 0.042 (2) 0.002 (2) 0.003 (2) 0.0003 (18)
C5 0.046 (3) 0.041 (2) 0.040 (2) −0.007 (2) 0.003 (2) 0.0019 (18)
C6 0.030 (2) 0.033 (2) 0.043 (2) 0.0057 (17) −0.0024 (17) −0.0062 (16)
C7 0.037 (2) 0.035 (2) 0.038 (2) 0.0007 (18) 0.0072 (17) −0.0044 (17)
C8 0.036 (2) 0.044 (2) 0.047 (2) 0.012 (2) 0.0091 (19) 0.0015 (19)
C9 0.060 (3) 0.028 (2) 0.051 (3) 0.005 (2) 0.006 (2) −0.0003 (17)
C10 0.043 (3) 0.036 (2) 0.034 (2) −0.0029 (18) 0.005 (2) −0.0024 (17)
C11 0.035 (2) 0.034 (2) 0.042 (2) −0.0049 (17) 0.0024 (18) −0.0014 (17)
C12 0.048 (3) 0.0219 (19) 0.043 (2) 0.0055 (19) 0.0043 (19) −0.0025 (16)

Geometric parameters (Å, °)

S1—C6 1.762 (4) C3—C4 1.393 (7)
S1—S2 2.0671 (16) C4—C5 1.354 (7)
Cl1—C1 1.738 (4) C4—H4A 0.9300
N1—C3 1.387 (6) C5—C6 1.407 (6)
N1—H1A 0.8601 C5—H5A 0.9300
N1—H1B 0.8599 C7—C12 1.385 (7)
C1—C6 1.375 (7) C7—C8 1.393 (6)
C1—C2 1.384 (6) C8—C9 1.371 (7)
Cl2—C12 1.744 (4) C8—H8A 0.9300
S2—C7 1.755 (4) C9—C10 1.393 (7)
N2—C10 1.357 (6) C9—H9A 0.9300
N2—H2A 0.8599 C10—C11 1.396 (6)
N2—H2B 0.8600 C11—C12 1.374 (7)
C2—C3 1.390 (6) C11—H11A 0.9300
C2—H2C 0.9300
C6—S1—S2 105.43 (14) C6—C5—H5A 118.9
C3—N1—H1A 120.2 C1—C6—C5 116.6 (4)
C3—N1—H1B 119.8 C1—C6—S1 123.7 (3)
H1A—N1—H1B 120.0 C5—C6—S1 119.6 (4)
C6—C1—C2 122.9 (4) C12—C7—C8 116.0 (4)
C6—C1—Cl1 121.0 (3) C12—C7—S2 123.4 (3)
C2—C1—Cl1 116.1 (4) C8—C7—S2 120.5 (4)
C7—S2—S1 105.13 (15) C9—C8—C7 122.4 (4)
C10—N2—H2A 119.9 C9—C8—H8A 118.8
C10—N2—H2B 120.1 C7—C8—H8A 118.8
H2A—N2—H2B 120.0 C8—C9—C10 120.7 (4)
C1—C2—C3 118.5 (5) C8—C9—H9A 119.7
C1—C2—H2C 120.8 C10—C9—H9A 119.7
C3—C2—H2C 120.8 N2—C10—C9 121.7 (4)
N1—C3—C2 119.4 (5) N2—C10—C11 120.5 (4)
N1—C3—C4 120.6 (4) C9—C10—C11 117.8 (4)
C2—C3—C4 120.0 (4) C12—C11—C10 120.2 (4)
C5—C4—C3 119.7 (4) C12—C11—H11A 119.9
C5—C4—H4A 120.2 C10—C11—H11A 119.9
C3—C4—H4A 120.2 C11—C12—C7 122.9 (4)
C4—C5—C6 122.3 (5) C11—C12—Cl2 116.4 (4)
C4—C5—H5A 118.9 C7—C12—Cl2 120.7 (3)
C6—S1—S2—C7 −84.2 (2) S1—S2—C7—C12 99.7 (4)
C6—C1—C2—C3 −0.1 (7) S1—S2—C7—C8 −82.5 (3)
Cl1—C1—C2—C3 179.9 (4) C12—C7—C8—C9 0.6 (6)
C1—C2—C3—N1 −175.6 (4) S2—C7—C8—C9 −177.4 (3)
C1—C2—C3—C4 1.6 (7) C7—C8—C9—C10 −0.2 (6)
N1—C3—C4—C5 175.0 (4) C8—C9—C10—N2 178.8 (4)
C2—C3—C4—C5 −2.1 (7) C8—C9—C10—C11 0.8 (6)
C3—C4—C5—C6 1.1 (6) N2—C10—C11—C12 −179.7 (4)
C2—C1—C6—C5 −0.8 (6) C9—C10—C11—C12 −1.7 (6)
Cl1—C1—C6—C5 179.2 (3) C10—C11—C12—C7 2.1 (6)
C2—C1—C6—S1 175.6 (3) C10—C11—C12—Cl2 −179.2 (3)
Cl1—C1—C6—S1 −4.4 (5) C8—C7—C12—C11 −1.5 (6)
C4—C5—C6—C1 0.3 (6) S2—C7—C12—C11 176.4 (3)
C4—C5—C6—S1 −176.3 (3) C8—C7—C12—Cl2 179.8 (3)
S2—S1—C6—C1 102.4 (3) S2—C7—C12—Cl2 −2.2 (5)
S2—S1—C6—C5 −81.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···S1i 0.86 2.80 3.611 (5) 158
N2—H2A···S2ii 0.86 2.86 3.684 (5) 162

Symmetry codes: (i) x−1/2, y+1/2, z; (ii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5174).

References

  1. Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187–204.
  2. Crowley, D. J. (1964). US Patent No. 3 150 186.
  3. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  6. Korp, J. D. & Bernal, I. (1984). J. Mol. Struct. 118, 157–164.
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Poveteva, Z. P. & Zvonkova, Z. V. (1975). Kristallografiya, 20, 69–73.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014425/xu5174sup1.cif

e-67-o1197-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014425/xu5174Isup2.hkl

e-67-o1197-Isup2.hkl (128KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES