Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):m538–m539. doi: 10.1107/S1600536811011615

Bis(2-carboxybenzo­ato-κO 1)bis­[1-cyclo­propyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ato-κ2 O 3,O 4]manganese(II) dihydrate

Guang-Ju Zhang a,*, Jiang-Hong He a, Shi-Wei Yan a, Dian-Zhen Sun a, Hai-Yan Chen a
PMCID: PMC3089319  PMID: 21754278

Abstract

The title compound, [Mn(C17H18FN3O3)2(C8H5O4)2]·2H2O or [Mn(cfH)2(1,2-Hbdc)2]·2H2O (cfH = ciprofloxacin = 1-cyclo­propyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazin­yl)-3-quinoline carb­oxy­lic acid, 1,2-bdc = benzene-1,2-dicarboxyl­ate), has been prepared under hydro­thermal conditions. The Mn2+ atom, located on an inversion centre, exhibits a distorted octa­hedral geometry, coordinated by four O atoms from two symmetry-related zwitterionic ciprofloxacin ligands in the equatorial positions and two O atoms of two 1,2-Hbdc ligands in the axial positions. The complex mol­ecules are linked into a two-dimensional network through N—H⋯O and OW—H⋯O hydrogen bonds. A strong intramolecular hydrogen bond between the carboxyl/carboxylate groups of the 1,2-Hbdc anion is also present. The layers are further extended through off-set aromatic π–π stacking inter­actions of cfH groups [centroid–centroid distance of 3.657 (2) Å] into the final three-dimensional supra­molecular arrays.

Related literature

For background to the anti­biotic drug ciprofloxacin, see: Turel (2002); Xiao et al. (2005). The mechanisms of action of the quinolone anti­bacterial agents are either their inhibition of DNA gyrase (Topoisomerase II) or their inter­action with the DNA mol­ecule via a metal complex inter­mediate, see: Chulvi et al. (1991); Ruiz et al. (1993); Wallis et al. (1995). For related structures, see: Fabbiani & Dittrich (2008); Wang et al. (2009). graphic file with name e-67-0m538-scheme1.jpg

Experimental

Crystal data

  • [Mn(C17H18FN3O3)2(C8H5O4)2]·2H2O

  • M r = 1083.90

  • Monoclinic, Inline graphic

  • a = 9.4510 (19) Å

  • b = 22.042 (4) Å

  • c = 11.695 (2) Å

  • β = 98.44 (3)°

  • V = 2409.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.58 × 0.47 × 0.32 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.817, T max = 0.893

  • 22913 measured reflections

  • 5494 independent reflections

  • 3555 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.145

  • S = 1.00

  • 5494 reflections

  • 350 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011615/vm2075sup1.cif

e-67-0m538-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011615/vm2075Isup2.hkl

e-67-0m538-Isup2.hkl (274.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1B⋯O5 0.84 (3) 2.43 (3) 3.108 (4) 139 (4)
N1—H1A⋯O7i 0.90 1.82 2.717 (3) 174
N1—H1B⋯O1ii 0.90 1.79 2.688 (3) 173
N1—H1B⋯O2ii 0.90 2.60 3.246 (3) 130
OW1—HW1A⋯O3iii 0.84 (3) 2.12 (1) 2.937 (3) 164 (4)
O6—H6⋯O5 0.85 (4) 1.53 (4) 2.379 (4) 175 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035).

supplementary crystallographic information

Comment

Ciprofloxacin [cfH = 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid] belongs to the quinolone family of synthetic antibiotics (Turel, 2002; Xiao et al., 2005) and is a third generation quinolone antibacterial drug with broad-spectrum antibacterial activity (especially aerobic gram-negative bacilli high antibacterial activity). The mechanisms of action of the quinolone antibacterial agents are either their inhibition of DNA gyrase (Topoisomerase II), an essential bacterial enzyme that maintains superhelical twists in DNA, or their interaction with the DNA molecule via a metal complex intermediate (Chulvi et al., 1991; Ruiz et al., 1993; Wallis et al., 1995).

The Ciprofloxacin and its deprotonated anions can show a number of different coordinating or bridging modes. The title complex consists of a Mn2+ atom lying on an inversion center, two Ciprofloxacin ligands, two 1,2-benzenedicarboxylate ligands (1,2-bdc) and a water molecule (Fig. 1). The Ciprofloxacin ligand acts as chelating bidentate and the Mn(II) atom is coordinated by four oxygen atoms from two different Ciprofloxacin ligands and two oxygen atoms from two 1,2-bdc ligands. The N—H···O and OW—H···O hydrogen bonds link the discrete molecules into two-dimensional arrays (Table 1). These two-dimensional layers are further extended through off-set aromatic π—π stacking interplanar of cfH groups (centroid distance of 3.657 Å) into the final three-dimensional supramolecular arrays (Fig. 2).

Experimental

A mixture of Mn(OAc)2.4H2O (0.5 mmol), ciprofloxacin hydrochloride (0.25 mmol), 1,2-KHbdc (0.5 mmol), and water (7 ml) was stirred for 30 min in air (solution pH = 4.0), then transferred and sealed in an 18 ml Teflon-lined autoclave, which was heated at 110 °C for 96 h. After slow cooling to room temperature, yellow block crystals were filtered off, washed with distilled water, and dried at ambient temperature.

Refinement

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C or N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 – 0.98 Å and N—H = 0.90 Å, Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N)]. The H atoms bonded to OW atoms were located in a difference Fourier maps and refined with OW—H = 0.84 Å and Uiso(H) = 1.3Ueq(OW).

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of 1 with thermal ellipsoids at 30% probability. Symmetry code (i): -x, -y, -z+1.

Fig. 2.

Fig. 2.

Perspective view of the three-dimensional supramolecular network in 1. The hydrogen bonds are indicated by pink dotted lines while the aromatic π—π stacking interaction is indicated by a green dotted line.

Crystal data

[Mn(C17H18FN3O3)2(C8H5O4)2]·2H2O F(000) = 1126
Mr = 1083.90 Dx = 1.494 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 22913 reflections
a = 9.4510 (19) Å θ = 3.1–27.5°
b = 22.042 (4) Å µ = 0.36 mm1
c = 11.695 (2) Å T = 293 K
β = 98.44 (3)° Block, yellow
V = 2409.9 (8) Å3 0.58 × 0.47 × 0.32 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer 5494 independent reflections
Radiation source: fine-focus sealed tube 3555 reflections with I > 2σ(I)
graphite Rint = 0.068
Detector resolution: 100x100 microns pixels mm-1 θmax = 27.5°, θmin = 3.1°
Oscillation scans h = −12→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −28→27
Tmin = 0.817, Tmax = 0.893 l = −14→15
22913 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2] where P = (Fo2 + 2Fc2)/3
5494 reflections (Δ/σ)max < 0.001
350 parameters Δρmax = 0.45 e Å3
10 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.0000 0.0000 0.5000 0.02941 (16)
F1 0.36711 (17) −0.03305 (7) 1.05085 (13) 0.0405 (4)
O1 −0.3533 (2) 0.08833 (10) 0.61415 (16) 0.0463 (5)
OW1 −0.1255 (4) 0.13296 (13) 0.2728 (2) 0.0820 (9)
HW1A −0.094 (5) 0.0991 (10) 0.298 (3) 0.110*
HW1B −0.138 (5) 0.1555 (15) 0.328 (2) 0.109*
O2 −0.20086 (19) 0.03315 (9) 0.53302 (15) 0.0357 (4)
O3 0.0395 (2) −0.00587 (8) 0.68591 (15) 0.0343 (4)
O4 0.0782 (2) 0.09397 (9) 0.50461 (18) 0.0439 (5)
O5 −0.0132 (3) 0.18400 (11) 0.5170 (2) 0.0750 (8)
O6 −0.0126 (4) 0.26486 (14) 0.6518 (3) 0.1005 (12)
O7 0.0876 (4) 0.28742 (12) 0.8236 (3) 0.0931 (11)
N1 0.5198 (2) 0.10018 (9) 1.39405 (17) 0.0314 (5)
H1A 0.5482 0.1366 1.3711 0.038*
H1B 0.5652 0.0931 1.4660 0.038*
N2 0.3244 (2) 0.06259 (10) 1.19684 (17) 0.0305 (5)
N3 −0.0836 (2) 0.12018 (9) 0.91028 (17) 0.0298 (5)
C1 −0.2347 (3) 0.06311 (11) 0.6166 (2) 0.0295 (5)
C2 −0.1306 (3) 0.06868 (11) 0.7272 (2) 0.0276 (5)
C3 −0.0053 (3) 0.03176 (11) 0.75371 (19) 0.0259 (5)
C4 0.0734 (2) 0.03979 (11) 0.8693 (2) 0.0259 (5)
C5 0.1887 (3) 0.00113 (11) 0.9079 (2) 0.0286 (5)
H5A 0.2133 −0.0297 0.8601 0.034*
C6 0.2637 (3) 0.00873 (11) 1.0142 (2) 0.0285 (5)
C7 0.2384 (3) 0.05589 (11) 1.0898 (2) 0.0277 (5)
C8 0.1208 (3) 0.09297 (11) 1.0534 (2) 0.0298 (5)
H8A 0.0973 0.1239 1.1015 0.036*
C9 0.0374 (3) 0.08415 (11) 0.9447 (2) 0.0259 (5)
C10 −0.1624 (3) 0.10961 (12) 0.8066 (2) 0.0315 (5)
H10A −0.2456 0.1322 0.7878 0.038*
C11 −0.1357 (3) 0.16131 (13) 0.9927 (2) 0.0404 (6)
H11A −0.1788 0.1415 1.0542 0.048*
C12 −0.0615 (4) 0.21907 (14) 1.0259 (3) 0.0578 (9)
H12A 0.0223 0.2289 0.9906 0.069*
H12B −0.0577 0.2326 1.1052 0.069*
C13 −0.2032 (4) 0.21968 (15) 0.9507 (3) 0.0606 (10)
H13A −0.2854 0.2334 0.9844 0.073*
H13B −0.2054 0.2297 0.8697 0.073*
C14 0.4800 (3) 0.06480 (13) 1.1950 (2) 0.0358 (6)
H14A 0.5066 0.1044 1.1691 0.043*
H14B 0.5065 0.0346 1.1416 0.043*
C15 0.5581 (3) 0.05253 (13) 1.3150 (2) 0.0384 (6)
H15A 0.5314 0.0130 1.3412 0.046*
H15B 0.6606 0.0527 1.3140 0.046*
C16 0.3629 (3) 0.10097 (13) 1.3950 (2) 0.0346 (6)
H16A 0.3392 0.1339 1.4439 0.041*
H16B 0.3341 0.0632 1.4276 0.041*
C17 0.2812 (3) 0.10894 (13) 1.2747 (2) 0.0349 (6)
H17A 0.1793 0.1057 1.2772 0.042*
H17B 0.2999 0.1489 1.2457 0.042*
C18 0.0744 (3) 0.14291 (12) 0.5553 (2) 0.0376 (6)
C19 0.1798 (3) 0.15346 (11) 0.6640 (2) 0.0321 (6)
C20 0.2873 (3) 0.10976 (13) 0.6846 (3) 0.0399 (6)
H20A 0.2873 0.0778 0.6327 0.048*
C21 0.3928 (4) 0.11212 (16) 0.7781 (3) 0.0531 (8)
H21A 0.4638 0.0826 0.7883 0.064*
C22 0.3934 (4) 0.15842 (18) 0.8571 (3) 0.0626 (10)
H22A 0.4640 0.1601 0.9214 0.075*
C23 0.2886 (4) 0.20213 (16) 0.8400 (3) 0.0573 (9)
H23A 0.2890 0.2330 0.8943 0.069*
C24 0.1812 (3) 0.20172 (12) 0.7437 (2) 0.0394 (6)
C25 0.0795 (4) 0.25462 (14) 0.7399 (3) 0.0562 (9)
H6 −0.017 (6) 0.2366 (18) 0.602 (4) 0.13 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0300 (3) 0.0375 (3) 0.0188 (3) 0.0027 (2) −0.0029 (2) −0.0051 (2)
F1 0.0374 (8) 0.0479 (9) 0.0314 (8) 0.0147 (7) −0.0111 (7) −0.0025 (7)
O1 0.0317 (10) 0.0791 (15) 0.0242 (10) 0.0190 (10) −0.0087 (8) −0.0106 (9)
OW1 0.122 (3) 0.0689 (17) 0.0486 (16) 0.0195 (17) −0.0109 (16) 0.0000 (13)
O2 0.0290 (9) 0.0515 (11) 0.0236 (9) 0.0050 (8) −0.0064 (7) −0.0084 (8)
O3 0.0407 (10) 0.0397 (10) 0.0193 (9) 0.0100 (8) −0.0059 (7) −0.0051 (7)
O4 0.0489 (12) 0.0417 (11) 0.0405 (12) −0.0045 (9) 0.0045 (9) −0.0119 (8)
O5 0.0855 (19) 0.0603 (15) 0.0650 (17) 0.0255 (14) −0.0361 (14) −0.0108 (12)
O6 0.115 (3) 0.0683 (19) 0.106 (3) 0.0507 (19) −0.027 (2) −0.0308 (18)
O7 0.152 (3) 0.0554 (15) 0.073 (2) 0.0280 (18) 0.021 (2) −0.0228 (14)
N1 0.0332 (11) 0.0370 (11) 0.0207 (10) −0.0053 (9) −0.0077 (8) 0.0009 (8)
N2 0.0263 (10) 0.0451 (12) 0.0178 (10) 0.0021 (9) −0.0045 (8) −0.0056 (8)
N3 0.0305 (11) 0.0366 (11) 0.0204 (10) 0.0057 (9) −0.0021 (8) −0.0045 (8)
C1 0.0260 (12) 0.0396 (13) 0.0200 (12) 0.0012 (10) −0.0056 (10) −0.0004 (9)
C2 0.0255 (12) 0.0378 (13) 0.0177 (11) 0.0011 (10) −0.0032 (9) −0.0009 (9)
C3 0.0263 (12) 0.0325 (12) 0.0171 (11) −0.0031 (10) −0.0023 (9) 0.0015 (9)
C4 0.0241 (11) 0.0351 (12) 0.0171 (11) −0.0007 (10) −0.0019 (9) 0.0005 (9)
C5 0.0282 (12) 0.0336 (12) 0.0226 (12) 0.0043 (11) −0.0015 (9) −0.0034 (10)
C6 0.0242 (11) 0.0358 (13) 0.0242 (12) 0.0051 (10) −0.0011 (9) 0.0029 (9)
C7 0.0247 (12) 0.0385 (13) 0.0176 (11) −0.0020 (10) −0.0041 (9) 0.0016 (9)
C8 0.0295 (12) 0.0390 (13) 0.0192 (12) 0.0026 (11) −0.0019 (10) −0.0051 (9)
C9 0.0254 (11) 0.0316 (12) 0.0193 (11) 0.0011 (10) −0.0018 (9) 0.0000 (9)
C10 0.0268 (12) 0.0401 (13) 0.0253 (13) 0.0049 (11) −0.0040 (10) 0.0004 (10)
C11 0.0410 (15) 0.0462 (16) 0.0326 (15) 0.0093 (13) 0.0010 (12) −0.0077 (12)
C12 0.068 (2) 0.0489 (18) 0.052 (2) 0.0073 (17) −0.0037 (17) −0.0163 (15)
C13 0.073 (2) 0.0552 (19) 0.050 (2) 0.0284 (18) −0.0030 (18) −0.0135 (15)
C14 0.0240 (12) 0.0563 (17) 0.0253 (13) −0.0002 (11) −0.0023 (10) −0.0054 (11)
C15 0.0285 (13) 0.0539 (17) 0.0298 (14) 0.0020 (12) −0.0053 (11) −0.0067 (12)
C16 0.0343 (14) 0.0467 (15) 0.0211 (13) −0.0018 (12) −0.0011 (11) −0.0045 (10)
C17 0.0279 (12) 0.0505 (15) 0.0235 (13) 0.0024 (11) −0.0050 (10) −0.0080 (11)
C18 0.0369 (14) 0.0368 (14) 0.0389 (16) −0.0007 (12) 0.0046 (12) −0.0013 (11)
C19 0.0358 (14) 0.0326 (13) 0.0288 (13) −0.0023 (11) 0.0075 (11) −0.0012 (10)
C20 0.0406 (15) 0.0419 (15) 0.0373 (16) 0.0048 (12) 0.0062 (12) 0.0008 (12)
C21 0.0460 (18) 0.063 (2) 0.0484 (19) 0.0104 (16) 0.0003 (15) 0.0069 (15)
C22 0.056 (2) 0.083 (3) 0.0423 (19) −0.0044 (19) −0.0149 (16) −0.0008 (17)
C23 0.066 (2) 0.058 (2) 0.046 (2) −0.0099 (17) 0.0002 (17) −0.0156 (15)
C24 0.0456 (16) 0.0369 (14) 0.0355 (15) −0.0026 (13) 0.0052 (13) −0.0046 (11)
C25 0.078 (3) 0.0341 (16) 0.058 (2) 0.0072 (16) 0.0164 (19) −0.0045 (14)

Geometric parameters (Å, °)

Mn1—O2 2.1219 (18) C6—C7 1.408 (3)
Mn1—O2i 2.1219 (18) C7—C8 1.394 (3)
Mn1—O3 2.1552 (17) C8—C9 1.408 (3)
Mn1—O3i 2.1552 (17) C8—H8A 0.9300
Mn1—O4 2.1971 (19) C10—H10A 0.9300
Mn1—O4i 2.1971 (19) C11—C12 1.478 (4)
F1—C6 1.365 (3) C11—C13 1.488 (4)
O1—C1 1.247 (3) C11—H11A 0.9800
OW1—HW1A 0.84 (3) C12—C13 1.491 (5)
OW1—HW1B 0.84 (3) C12—H12A 0.9700
O2—C1 1.259 (3) C12—H12B 0.9700
O3—C3 1.263 (3) C13—H13A 0.9700
O4—C18 1.234 (3) C13—H13B 0.9700
O5—C18 1.264 (4) C14—C15 1.510 (4)
O6—C25 1.268 (5) C14—H14A 0.9700
O6—H6 0.85 (4) C14—H14B 0.9700
O7—C25 1.210 (4) C15—H15A 0.9700
N1—C15 1.480 (3) C15—H15B 0.9700
N1—C16 1.485 (3) C16—C17 1.513 (3)
N1—H1A 0.9000 C16—H16A 0.9700
N1—H1B 0.9000 C16—H16B 0.9700
N2—C7 1.396 (3) C17—H17A 0.9700
N2—C17 1.466 (3) C17—H17B 0.9700
N2—C14 1.475 (3) C18—C19 1.514 (4)
N3—C10 1.346 (3) C19—C20 1.395 (4)
N3—C9 1.402 (3) C19—C24 1.413 (4)
N3—C11 1.460 (3) C20—C21 1.369 (4)
C1—C2 1.511 (3) C20—H20A 0.9300
C2—C10 1.360 (3) C21—C22 1.376 (5)
C2—C3 1.433 (3) C21—H21A 0.9300
C3—C4 1.455 (3) C22—C23 1.375 (5)
C4—C9 1.392 (3) C22—H22A 0.9300
C4—C5 1.405 (3) C23—C24 1.402 (4)
C5—C6 1.349 (3) C23—H23A 0.9300
C5—H5A 0.9300 C24—C25 1.508 (4)
O2—Mn1—O2i 180.00 (9) C12—C11—C13 60.4 (2)
O2—Mn1—O3 82.19 (7) N3—C11—H11A 115.1
O2i—Mn1—O3 97.81 (7) C12—C11—H11A 115.1
O2—Mn1—O3i 97.81 (7) C13—C11—H11A 115.1
O2i—Mn1—O3i 82.19 (7) C11—C12—C13 60.2 (2)
O3—Mn1—O3i 180.0 C11—C12—H12A 117.8
O2—Mn1—O4 88.72 (8) C13—C12—H12A 117.8
O2i—Mn1—O4 91.28 (8) C11—C12—H12B 117.8
O3—Mn1—O4 91.37 (7) C13—C12—H12B 117.8
O3i—Mn1—O4 88.63 (7) H12A—C12—H12B 114.9
O2—Mn1—O4i 91.28 (8) C11—C13—C12 59.5 (2)
O2i—Mn1—O4i 88.72 (8) C11—C13—H13A 117.8
O3—Mn1—O4i 88.63 (7) C12—C13—H13A 117.8
O3i—Mn1—O4i 91.37 (7) C11—C13—H13B 117.8
O4—Mn1—O4i 180.0 C12—C13—H13B 117.8
HW1A—OW1—HW1B 109.7 (18) H13A—C13—H13B 115.0
C1—O2—Mn1 131.15 (16) N2—C14—C15 109.5 (2)
C3—O3—Mn1 124.73 (15) N2—C14—H14A 109.8
C18—O4—Mn1 143.4 (2) C15—C14—H14A 109.8
C25—O6—H6 113 (4) N2—C14—H14B 109.8
C15—N1—C16 110.5 (2) C15—C14—H14B 109.8
C15—N1—H1A 109.6 H14A—C14—H14B 108.2
C16—N1—H1A 109.6 N1—C15—C14 108.8 (2)
C15—N1—H1B 109.6 N1—C15—H15A 109.9
C16—N1—H1B 109.6 C14—C15—H15A 109.9
H1A—N1—H1B 108.1 N1—C15—H15B 109.9
C7—N2—C17 116.8 (2) C14—C15—H15B 109.9
C7—N2—C14 116.2 (2) H15A—C15—H15B 108.3
C17—N2—C14 110.8 (2) N1—C16—C17 111.6 (2)
C10—N3—C9 118.7 (2) N1—C16—H16A 109.3
C10—N3—C11 120.4 (2) C17—C16—H16A 109.3
C9—N3—C11 120.1 (2) N1—C16—H16B 109.3
O1—C1—O2 123.1 (2) C17—C16—H16B 109.3
O1—C1—C2 116.9 (2) H16A—C16—H16B 108.0
O2—C1—C2 120.0 (2) N2—C17—C16 110.2 (2)
C10—C2—C3 119.2 (2) N2—C17—H17A 109.6
C10—C2—C1 117.3 (2) C16—C17—H17A 109.6
C3—C2—C1 123.5 (2) N2—C17—H17B 109.6
O3—C3—C2 125.5 (2) C16—C17—H17B 109.6
O3—C3—C4 119.4 (2) H17A—C17—H17B 108.1
C2—C3—C4 115.2 (2) O4—C18—O5 121.3 (3)
C9—C4—C5 118.2 (2) O4—C18—C19 118.4 (2)
C9—C4—C3 122.3 (2) O5—C18—C19 120.3 (2)
C5—C4—C3 119.4 (2) C20—C19—C24 118.1 (3)
C6—C5—C4 119.9 (2) C20—C19—C18 114.3 (2)
C6—C5—H5A 120.0 C24—C19—C18 127.6 (2)
C4—C5—H5A 120.0 C21—C20—C19 122.5 (3)
C5—C6—F1 117.4 (2) C21—C20—H20A 118.7
C5—C6—C7 123.8 (2) C19—C20—H20A 118.7
F1—C6—C7 118.8 (2) C20—C21—C22 119.7 (3)
C8—C7—N2 123.0 (2) C20—C21—H21A 120.2
C8—C7—C6 116.3 (2) C22—C21—H21A 120.2
N2—C7—C6 120.7 (2) C23—C22—C21 119.4 (3)
C7—C8—C9 120.7 (2) C23—C22—H22A 120.3
C7—C8—H8A 119.7 C21—C22—H22A 120.3
C9—C8—H8A 119.7 C22—C23—C24 122.2 (3)
C4—C9—N3 118.7 (2) C22—C23—H23A 118.9
C4—C9—C8 120.8 (2) C24—C23—H23A 118.9
N3—C9—C8 120.4 (2) C23—C24—C19 118.0 (3)
N3—C10—C2 125.6 (2) C23—C24—C25 113.7 (3)
N3—C10—H10A 117.2 C19—C24—C25 128.3 (3)
C2—C10—H10A 117.2 O7—C25—O6 120.4 (4)
N3—C11—C12 121.0 (3) O7—C25—C24 118.3 (4)
N3—C11—C13 119.2 (3) O6—C25—C24 121.3 (3)
O2i—Mn1—O2—C1 −97 (100) C5—C4—C9—C8 4.6 (4)
O3—Mn1—O2—C1 31.5 (2) C3—C4—C9—C8 −176.3 (2)
O3i—Mn1—O2—C1 −148.5 (2) C10—N3—C9—C4 1.5 (3)
O4—Mn1—O2—C1 −60.0 (2) C11—N3—C9—C4 171.6 (2)
O4i—Mn1—O2—C1 120.0 (2) C10—N3—C9—C8 −178.7 (2)
O2—Mn1—O3—C3 −36.48 (19) C11—N3—C9—C8 −8.6 (4)
O2i—Mn1—O3—C3 143.52 (19) C7—C8—C9—C4 −2.5 (4)
O3i—Mn1—O3—C3 −147 (100) C7—C8—C9—N3 177.7 (2)
O4—Mn1—O3—C3 52.0 (2) C9—N3—C10—C2 −4.1 (4)
O4i—Mn1—O3—C3 −128.0 (2) C11—N3—C10—C2 −174.2 (3)
O2—Mn1—O4—C18 39.5 (3) C3—C2—C10—N3 1.5 (4)
O2i—Mn1—O4—C18 −140.5 (3) C1—C2—C10—N3 179.1 (2)
O3—Mn1—O4—C18 −42.7 (3) C10—N3—C11—C12 −114.2 (3)
O3i—Mn1—O4—C18 137.3 (3) C9—N3—C11—C12 75.8 (3)
O4i—Mn1—O4—C18 −161 (100) C10—N3—C11—C13 −43.1 (4)
Mn1—O2—C1—O1 167.0 (2) C9—N3—C11—C13 146.9 (3)
Mn1—O2—C1—C2 −14.3 (4) N3—C11—C12—C13 108.3 (3)
O1—C1—C2—C10 −12.1 (4) N3—C11—C13—C12 −111.2 (3)
O2—C1—C2—C10 169.1 (2) C7—N2—C14—C15 −162.5 (2)
O1—C1—C2—C3 165.3 (2) C17—N2—C14—C15 61.0 (3)
O2—C1—C2—C3 −13.4 (4) C16—N1—C15—C14 58.7 (3)
Mn1—O3—C3—C2 26.7 (3) N2—C14—C15—N1 −61.2 (3)
Mn1—O3—C3—C4 −153.29 (17) C15—N1—C16—C17 −55.8 (3)
C10—C2—C3—O3 −176.6 (2) C7—N2—C17—C16 167.0 (2)
C1—C2—C3—O3 5.9 (4) C14—N2—C17—C16 −56.8 (3)
C10—C2—C3—C4 3.4 (3) N1—C16—C17—N2 54.2 (3)
C1—C2—C3—C4 −174.0 (2) Mn1—O4—C18—O5 −95.6 (4)
O3—C3—C4—C9 174.2 (2) Mn1—O4—C18—C19 85.7 (4)
C2—C3—C4—C9 −5.8 (3) O4—C18—C19—C20 10.4 (4)
O3—C3—C4—C5 −6.8 (3) O5—C18—C19—C20 −168.3 (3)
C2—C3—C4—C5 173.2 (2) O4—C18—C19—C24 −170.2 (3)
C9—C4—C5—C6 −1.9 (4) O5—C18—C19—C24 11.1 (5)
C3—C4—C5—C6 179.0 (2) C24—C19—C20—C21 −0.1 (4)
C4—C5—C6—F1 174.8 (2) C18—C19—C20—C21 179.4 (3)
C4—C5—C6—C7 −3.2 (4) C19—C20—C21—C22 1.2 (5)
C17—N2—C7—C8 3.5 (4) C20—C21—C22—C23 −0.8 (5)
C14—N2—C7—C8 −130.4 (3) C21—C22—C23—C24 −0.8 (6)
C17—N2—C7—C6 −173.9 (2) C22—C23—C24—C19 1.9 (5)
C14—N2—C7—C6 52.3 (3) C22—C23—C24—C25 −178.4 (3)
C5—C6—C7—C8 5.3 (4) C20—C19—C24—C23 −1.4 (4)
F1—C6—C7—C8 −172.7 (2) C18—C19—C24—C23 179.2 (3)
C5—C6—C7—N2 −177.2 (2) C20—C19—C24—C25 178.9 (3)
F1—C6—C7—N2 4.8 (4) C18—C19—C24—C25 −0.5 (5)
N2—C7—C8—C9 −179.8 (2) C23—C24—C25—O7 −8.7 (5)
C6—C7—C8—C9 −2.4 (4) C19—C24—C25—O7 171.0 (3)
C5—C4—C9—N3 −175.6 (2) C23—C24—C25—O6 171.3 (4)
C3—C4—C9—N3 3.5 (4) C19—C24—C25—O6 −9.0 (6)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
OW1—HW1B···O5 0.84 (3) 2.43 (3) 3.108 (4) 139 (4)
N1—H1A···O7ii 0.90 1.82 2.717 (3) 174.
N1—H1B···O1iii 0.90 1.79 2.688 (3) 173.
N1—H1B···O2iii 0.90 2.60 3.246 (3) 130.
OW1—HW1A···O3i 0.84 (3) 2.12 (1) 2.937 (3) 164 (4)
O6—H6···O5 0.85 (4) 1.53 (4) 2.379 (4) 175 (8)

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1, y, z+1; (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2075).

References

  1. Chulvi, C., Muñoz, M. C., Perelló, L., Ortiz, R., Arriortua, M. I., Via, J., Urtiaga, K., Amigó, J. M. & Ochando, L. E. (1991). J. Inorg. Biochem. 42, 133–138.
  2. Fabbiani, F. P. A. & Dittrich, B. (2008). Acta Cryst. E64, o2354–o2355. [DOI] [PMC free article] [PubMed]
  3. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Ruiz, M., Ortiz, R., Perello, L., Castñeiras, A. & Quirós, M. (1993). Inorg. Chim. Acta, 211, 133–139.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Turel, I. (2002). Coord. Chem. Rev. 232, 27–47.
  8. Wallis, S. C., Gahan, L. R., Charles, B. G. & Hambley, T. W. (1995). Polyhedron, 14, 2835–2840.
  9. Wang, Y.-J., Wang, N., Hu, R.-D., Lin, Q.-Y. & Wang, Y.-Y. (2009). Acta Cryst. E65, m783. [DOI] [PMC free article] [PubMed]
  10. Xiao, D. R., Wang, E. B., An, H. Y., Su, Z. M., Li, Y. G., Gao, L., Sun, C. Y. & Lin, X. (2005). Chem. Eur. J. 11, 6673–6686. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011615/vm2075sup1.cif

e-67-0m538-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011615/vm2075Isup2.hkl

e-67-0m538-Isup2.hkl (274.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES