Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1092. doi: 10.1107/S1600536811013237

4-(Diethyl­amino)­salicyl­aldehyde azine

Jing-Bo Qiu a, Bing-Zhu Yin a,*
PMCID: PMC3089320  PMID: 21754412

Abstract

The title compound, C22H30N4O2, has a crystallographic inversion center located at the mid-point of the N—N single bond. Apart from the four ethyl C atoms, the non-H atoms are nearly coplanar with a mean deviation of 0.0596 (2) Å. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (100).

Related literature

For the synthesis, see Tang et al. (2009). For a related structure, see Gil et al. (2010). For applications of photochromic aromatic Schiff base mol­ecules as mol­ecular memories and switches, see Sliwa et al. (2005).graphic file with name e-67-o1092-scheme1.jpg

Experimental

Crystal data

  • C22H30N4O2

  • M r = 382.50

  • Monoclinic, Inline graphic

  • a = 8.736 (5) Å

  • b = 7.809 (5) Å

  • c = 16.122 (10) Å

  • β = 103.57 (2)°

  • V = 1069.1 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 K

  • 0.15 × 0.14 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.988, T max = 0.991

  • 9903 measured reflections

  • 2431 independent reflections

  • 1227 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.228

  • S = 1.10

  • 2431 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013237/ng5147sup1.cif

e-67-o1092-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013237/ng5147Isup2.hkl

e-67-o1092-Isup2.hkl (119.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.64 3.481 (5) 145
O1—H1⋯N1 0.85 1.88 2.640 (3) 149

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 21062022) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

supplementary crystallographic information

Comment

Salicylaldehyde azine belongs to the photochromic aromatic schiff base molecules with two intramolecular hydrogen bonds (Gil et al., 2010). The photochromism of the molecules, owing to enol-keto intramolecular tautomerism, attracts much interest because of possible applications, for example, in molecular memories and switches (Sliwa et al., 2005). Herein, we report the crystal structure of the title compound.

The title compound, as shown in Fig. 1, all bond lengths and angles are in the normal ranges. Except for four carbon atoms, all the other non-hydrogen atoms nearly lie on the same plane. The intramolecular O—H···N and intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into layers prallel to (100).

Experimental

The title compound was prepared according to the literature (Tang et al., 2009). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). The hydroxy H atom was located in a difference Fourier map and treated as riding on its parent O atom with Uiso(H) = 1.5 Ueq(O). The distance of O1 and H1 was restricted to 0.85 Å with DFIX command.

Figures

Fig. 1.

Fig. 1.

The crystal structure of the title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level. [Symmetry code: A: 1 - x, 1 - y, 1 - z]

Crystal data

C22H30N4O2 F(000) = 412
Mr = 382.50 Dx = 1.188 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5162 reflections
a = 8.736 (5) Å θ = 3.1–27.7°
b = 7.809 (5) Å µ = 0.08 mm1
c = 16.122 (10) Å T = 290 K
β = 103.57 (2)° Block, yellow
V = 1069.1 (11) Å3 0.15 × 0.14 × 0.12 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 2431 independent reflections
Radiation source: fine-focus sealed tube 1227 reflections with I > 2σ(I)
graphite Rint = 0.046
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→11
Tmin = 0.988, Tmax = 0.991 k = −10→10
9903 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.3133P] where P = (Fo2 + 2Fc2)/3
2431 reflections (Δ/σ)max = 0.003
129 parameters Δρmax = 0.45 e Å3
1 restraint Δρmin = −0.25 e Å3

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2021 (2) 0.6394 (3) 0.57469 (13) 0.0809 (8)
H1 0.2663 0.6244 0.5433 0.121*
C1 0.4983 (3) 0.4599 (4) 0.60317 (18) 0.0556 (7)
H1A 0.5914 0.3972 0.6165 0.067*
C2 0.4129 (3) 0.4858 (3) 0.66828 (16) 0.0489 (7)
C3 0.4698 (3) 0.4235 (4) 0.75059 (18) 0.0602 (8)
H3 0.5638 0.3624 0.7625 0.072*
C4 0.3937 (3) 0.4480 (4) 0.81492 (18) 0.0653 (9)
H4 0.4360 0.4031 0.8688 0.078*
C5 0.2503 (3) 0.5418 (4) 0.79966 (18) 0.0575 (7)
C6 0.1898 (3) 0.5998 (4) 0.71712 (17) 0.0558 (7)
H6 0.0939 0.6573 0.7048 0.067*
C7 0.2678 (3) 0.5745 (4) 0.65257 (17) 0.0537 (7)
C8 0.2343 (5) 0.5030 (6) 0.9510 (2) 0.0878 (11)
H8A 0.3481 0.5128 0.9679 0.105*
H8B 0.1906 0.5672 0.9915 0.105*
C9 0.1893 (5) 0.3226 (6) 0.9530 (3) 0.1028 (14)
H9A 0.0770 0.3142 0.9441 0.154*
H9B 0.2387 0.2742 1.0074 0.154*
H9C 0.2226 0.2614 0.9086 0.154*
C10 0.0357 (4) 0.6857 (5) 0.8511 (2) 0.0735 (9)
H10A 0.0461 0.7776 0.8123 0.088*
H10B 0.0312 0.7373 0.9052 0.088*
C11 −0.1157 (4) 0.5939 (5) 0.8161 (2) 0.0858 (11)
H11A −0.1144 0.5460 0.7615 0.129*
H11B −0.2018 0.6729 0.8100 0.129*
H11C −0.1283 0.5038 0.8545 0.129*
N1 0.4511 (3) 0.5198 (3) 0.52728 (15) 0.0589 (7)
N2 0.1766 (3) 0.5765 (4) 0.86429 (15) 0.0752 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0839 (14) 0.1066 (19) 0.0616 (13) 0.0420 (13) 0.0362 (11) 0.0333 (12)
C1 0.0554 (15) 0.0532 (17) 0.0651 (18) 0.0019 (13) 0.0280 (13) 0.0001 (13)
C2 0.0482 (14) 0.0504 (16) 0.0521 (15) −0.0016 (12) 0.0197 (11) 0.0012 (12)
C3 0.0454 (14) 0.076 (2) 0.0619 (18) 0.0117 (13) 0.0182 (13) 0.0085 (15)
C4 0.0519 (15) 0.097 (2) 0.0484 (16) 0.0105 (16) 0.0142 (12) 0.0101 (15)
C5 0.0505 (14) 0.0707 (19) 0.0569 (17) 0.0039 (13) 0.0242 (13) 0.0042 (14)
C6 0.0525 (14) 0.0620 (18) 0.0581 (16) 0.0110 (13) 0.0235 (13) 0.0091 (14)
C7 0.0560 (15) 0.0550 (17) 0.0549 (16) 0.0075 (13) 0.0227 (13) 0.0111 (13)
C8 0.084 (2) 0.115 (3) 0.074 (2) 0.002 (2) 0.0365 (19) −0.009 (2)
C9 0.101 (3) 0.114 (4) 0.103 (3) 0.019 (3) 0.043 (2) 0.009 (2)
C10 0.075 (2) 0.083 (2) 0.072 (2) 0.0104 (18) 0.0374 (17) −0.0018 (17)
C11 0.079 (2) 0.091 (3) 0.094 (3) 0.009 (2) 0.0336 (19) 0.007 (2)
N1 0.0643 (14) 0.0606 (15) 0.0616 (15) 0.0027 (12) 0.0345 (11) 0.0032 (12)
N2 0.0708 (16) 0.108 (2) 0.0548 (15) 0.0222 (15) 0.0301 (12) 0.0097 (14)

Geometric parameters (Å, °)

O1—C7 1.351 (3) C8—C9 1.465 (6)
O1—H1 0.8461 C8—N2 1.486 (4)
C1—N1 1.284 (4) C8—H8A 0.9700
C1—C2 1.438 (4) C8—H8B 0.9700
C1—H1A 0.9300 C9—H9A 0.9600
C2—C3 1.391 (4) C9—H9B 0.9600
C2—C7 1.414 (4) C9—H9C 0.9600
C3—C4 1.371 (4) C10—N2 1.471 (4)
C3—H3 0.9300 C10—C11 1.494 (5)
C4—C5 1.422 (4) C10—H10A 0.9700
C4—H4 0.9300 C10—H10B 0.9700
C5—N2 1.374 (3) C11—H11A 0.9600
C5—C6 1.387 (4) C11—H11B 0.9600
C6—C7 1.386 (3) C11—H11C 0.9600
C6—H6 0.9300 N1—N1i 1.397 (4)
C7—O1—H1 107.9 C9—C8—H8B 109.4
N1—C1—C2 122.6 (3) N2—C8—H8B 109.4
N1—C1—H1A 118.7 H8A—C8—H8B 108.0
C2—C1—H1A 118.7 C8—C9—H9A 109.5
C3—C2—C7 116.6 (2) C8—C9—H9B 109.5
C3—C2—C1 121.1 (2) H9A—C9—H9B 109.5
C7—C2—C1 122.3 (2) C8—C9—H9C 109.5
C4—C3—C2 123.0 (3) H9A—C9—H9C 109.5
C4—C3—H3 118.5 H9B—C9—H9C 109.5
C2—C3—H3 118.5 N2—C10—C11 114.4 (3)
C3—C4—C5 120.3 (3) N2—C10—H10A 108.7
C3—C4—H4 119.8 C11—C10—H10A 108.7
C5—C4—H4 119.8 N2—C10—H10B 108.7
N2—C5—C6 121.5 (2) C11—C10—H10B 108.7
N2—C5—C4 121.4 (3) H10A—C10—H10B 107.6
C6—C5—C4 117.1 (2) C10—C11—H11A 109.5
C7—C6—C5 122.0 (2) C10—C11—H11B 109.5
C7—C6—H6 119.0 H11A—C11—H11B 109.5
C5—C6—H6 119.0 C10—C11—H11C 109.5
O1—C7—C6 117.9 (2) H11A—C11—H11C 109.5
O1—C7—C2 121.2 (2) H11B—C11—H11C 109.5
C6—C7—C2 120.9 (2) C1—N1—N1i 114.3 (3)
C9—C8—N2 111.0 (3) C5—N2—C10 122.0 (2)
C9—C8—H8A 109.4 C5—N2—C8 121.4 (3)
N2—C8—H8A 109.4 C10—N2—C8 116.6 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···O1ii 0.97 2.64 3.481 (5) 145
O1—H1···N1 0.85 1.88 2.640 (3) 149

Symmetry codes: (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5147).

References

  1. Gil, M., Ziółek, M., Organero, J. A. & Douhal, A. (2010). J. Phys. Chem. C, 114, 9554–9562.
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Rigaku Corporation (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC & Rigaku Corporation (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sliwa, M., Letard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Keitaro, N. K. (2005). Chem. Mater. 17, 4717–4735.
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Tang, W., Yu, X. & Tong, A. (2009). J. Org. Chem. 74, 2163–2166. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013237/ng5147sup1.cif

e-67-o1092-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013237/ng5147Isup2.hkl

e-67-o1092-Isup2.hkl (119.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES