Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1042. doi: 10.1107/S1600536811011597

2-Benzyl-6-benz­yloxypyridazin-3(2H)-one

Zhi-Yu Ju a, Wan-Xiang Jiang b, Feng-Ling Yang a,*
PMCID: PMC3089324  PMID: 21754369

Abstract

In the title compound, C18H16N2O2, the central pyridazine ring forms dihedral angles of 77.08 (5)° and 84.62 (5)° with the two benzene rings. The dihedral angle between the two benzene rings is 68.18 (4)°. A very weak intra­molecular C—H⋯N hydrogen bond and an intra­molecular C—H⋯π inter­action occur. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and weak C—H⋯π and π–π stacking inter­actions [centroid–centroid distance = 3.6867 (10) Å].

Related literature

For applications of pyridazinone analogues as highly selective anti-HIV agents, see: Loksha et al. (2007). For applications as pesticide agents, see: Li et al. (2005); Selby et al. (2002). For applications as herbicides, see: Xu et al. (2006). For related structures, see: Liu et al. (2005).graphic file with name e-67-o1042-scheme1.jpg

Experimental

Crystal data

  • C18H16N2O2

  • M r = 292.33

  • Monoclinic, Inline graphic

  • a = 32.741 (4) Å

  • b = 10.9198 (14) Å

  • c = 8.1228 (10) Å

  • β = 95.92 (2)°

  • V = 2888.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009) T min = 0.982, T max = 0.989

  • 18031 measured reflections

  • 3448 independent reflections

  • 2142 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.116

  • S = 0.95

  • 3448 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2009); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011597/fj2404sup1.cif

e-67-o1042-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011597/fj2404Isup2.hkl

e-67-o1042-Isup2.hkl (169.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.38 3.2906 (19) 161 (19)
C11—H11⋯N2 0.95 2.49 3.126 (2) 124
C11—H11⋯Cg3 0.95 2.98 3.7103 (17) 135
C17—H17⋯Cg3ii 0.95 2.98 3.6991 (17) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20972143), the Natural Science Foundation of Henan Province Educational Committee, China (grant Nos. 2010 A150021 and 2007150036) and the High-level Talents Foundation of Xuchang University (grant No. 2010 GC033).

supplementary crystallographic information

Comment

Pyridazinone analogues have been reported to have a variety of biological activities, such as highly-selective anti-HIV agents (Loksha et al., 2007), pesticide(Li et al., 2005), highly herbicidal activity (Xu et al., 2006). In order to discover further biologically active Pyridazinone analogues, the title compound, (I), was synthesized and its crystal structure determined (Fig. 1).

In a continuation of our studies on the crystal structures of Pyridazinone analogues (Liu et al., 2005), we report here the synthesis and crystal structure of the title molecule, the central pyridazine ring forms dihedral angles of 77.08 (5)° and 84.62 (5)° with the two benzene rings, The dihedral angle between two benzene rings is 68.18 (4)°. The Crystal structure is stabilized by a weak intramolecular C—H···N hydrogen bond (Table 1), a weak intermolecular C—H···O hydrogen bond (Table 1), C—H···Cgπ—ring (Table 1) and π-π stacking interactions where Cg(1)—Cg(1) (1/2 - x, 1/2 - y, 1 - z) is 3.6867 (10) Å [Cg(1) is the centroid of the N1,N2, C1—C4 ring] (Table 2).

Experimental

Maleic hydrazide(0.56 g, 5 mmol), Benzyl chloride(1.52 g, 12 mmol) and K2CO3 (1.66 g, 12 mmol) were added to absolute ethanol(30 ml). The mixture was stirred in the room temperature for 6 h. The suspension was filtered and the residue was washed with absolute ethanol. The title compound was recrystallized from the mother solution and single crystals of (I) were obtained by slow evaporation.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.95 Å and C—H = 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C18H16N2O2 F(000) = 1232
Mr = 292.33 Dx = 1.344 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4881 reflections
a = 32.741 (4) Å θ = 1.3–28.0°
b = 10.9198 (14) Å µ = 0.09 mm1
c = 8.1228 (10) Å T = 113 K
β = 95.92 (2)° Prism, colorless
V = 2888.6 (6) Å3 0.20 × 0.18 × 0.12 mm
Z = 8

Data collection

Rigaku Saturn CCD area-detector diffractometer 3448 independent reflections
Radiation source: rotating anode 2142 reflections with I > 2σ(I)
multilayer Rint = 0.063
Detector resolution: 14.63 pixels mm-1 θmax = 27.9°, θmin = 1.3°
ω and φ scans h = −43→41
Absorption correction: multi-scan CrystalClear k = −14→14
Tmin = 0.982, Tmax = 0.989 l = −10→10
18031 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3
3448 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20711 (3) 0.14159 (10) 0.06099 (12) 0.0315 (3)
O2 0.20245 (3) 0.38939 (9) 0.62925 (12) 0.0282 (3)
N1 0.18498 (4) 0.16470 (11) 0.31678 (14) 0.0221 (3)
N2 0.18241 (4) 0.22441 (11) 0.46481 (14) 0.0229 (3)
C1 0.20713 (5) 0.20250 (14) 0.19094 (18) 0.0241 (3)
C2 0.22975 (5) 0.31536 (14) 0.22369 (18) 0.0257 (4)
H2 0.2460 0.3470 0.1432 0.031*
C3 0.22792 (5) 0.37578 (14) 0.36727 (18) 0.0253 (4)
H3 0.2427 0.4499 0.3894 0.030*
C4 0.20319 (5) 0.32523 (14) 0.48542 (17) 0.0231 (3)
C5 0.15786 (4) 0.05874 (13) 0.29089 (17) 0.0232 (3)
H5A 0.1559 0.0173 0.3982 0.028*
H5B 0.1698 0.0000 0.2164 0.028*
C6 0.11536 (5) 0.09390 (13) 0.21683 (17) 0.0222 (3)
C7 0.09415 (5) 0.01638 (14) 0.10195 (17) 0.0257 (4)
H7 0.1068 −0.0570 0.0701 0.031*
C8 0.05468 (5) 0.04490 (15) 0.03337 (18) 0.0298 (4)
H8 0.0406 −0.0082 −0.0461 0.036*
C9 0.03585 (5) 0.15088 (15) 0.08102 (19) 0.0304 (4)
H9 0.0088 0.1706 0.0347 0.036*
C10 0.05657 (5) 0.22800 (14) 0.19643 (19) 0.0289 (4)
H10 0.0436 0.3004 0.2299 0.035*
C11 0.09614 (5) 0.20016 (14) 0.26341 (18) 0.0261 (4)
H11 0.1102 0.2540 0.3417 0.031*
C12 0.17631 (5) 0.34314 (15) 0.74918 (18) 0.0281 (4)
H12A 0.1835 0.3852 0.8562 0.034*
H12B 0.1818 0.2546 0.7665 0.034*
C13 0.13136 (5) 0.36113 (13) 0.69709 (17) 0.0246 (4)
C14 0.10296 (5) 0.28071 (14) 0.75401 (18) 0.0274 (4)
H14 0.1122 0.2156 0.8260 0.033*
C15 0.06137 (5) 0.29469 (14) 0.70671 (19) 0.0301 (4)
H15 0.0422 0.2389 0.7454 0.036*
C16 0.04764 (5) 0.39007 (14) 0.60290 (19) 0.0317 (4)
H16 0.0191 0.3996 0.5698 0.038*
C17 0.07560 (5) 0.47139 (15) 0.54761 (19) 0.0317 (4)
H17 0.0663 0.5371 0.4768 0.038*
C18 0.11706 (5) 0.45739 (14) 0.59503 (18) 0.0293 (4)
H18 0.1360 0.5142 0.5575 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0356 (7) 0.0367 (7) 0.0229 (6) −0.0022 (5) 0.0066 (5) −0.0036 (5)
O2 0.0292 (6) 0.0304 (6) 0.0252 (6) −0.0038 (5) 0.0037 (5) −0.0070 (5)
N1 0.0246 (7) 0.0239 (7) 0.0177 (6) −0.0016 (5) 0.0020 (5) −0.0007 (5)
N2 0.0239 (7) 0.0255 (7) 0.0191 (6) 0.0017 (5) 0.0009 (5) −0.0020 (5)
C1 0.0244 (8) 0.0282 (9) 0.0194 (7) 0.0034 (6) 0.0016 (6) 0.0022 (6)
C2 0.0243 (8) 0.0280 (9) 0.0247 (8) −0.0005 (7) 0.0026 (6) 0.0038 (7)
C3 0.0223 (8) 0.0243 (8) 0.0288 (8) −0.0007 (6) 0.0003 (7) 0.0015 (7)
C4 0.0221 (8) 0.0253 (8) 0.0213 (8) 0.0022 (6) −0.0008 (6) −0.0018 (6)
C5 0.0266 (8) 0.0211 (8) 0.0220 (7) −0.0021 (6) 0.0029 (6) −0.0001 (6)
C6 0.0248 (8) 0.0228 (8) 0.0193 (7) −0.0019 (6) 0.0032 (6) 0.0028 (6)
C7 0.0300 (9) 0.0251 (8) 0.0225 (8) −0.0044 (7) 0.0059 (7) −0.0006 (6)
C8 0.0301 (9) 0.0333 (9) 0.0256 (8) −0.0082 (7) 0.0006 (7) −0.0015 (7)
C9 0.0274 (9) 0.0332 (9) 0.0298 (9) −0.0029 (7) −0.0008 (7) 0.0063 (7)
C10 0.0304 (9) 0.0259 (9) 0.0304 (9) 0.0019 (7) 0.0028 (7) 0.0021 (7)
C11 0.0283 (8) 0.0245 (8) 0.0247 (8) −0.0005 (7) −0.0011 (6) −0.0018 (7)
C12 0.0322 (9) 0.0329 (9) 0.0194 (8) −0.0013 (7) 0.0034 (7) −0.0020 (7)
C13 0.0336 (9) 0.0216 (8) 0.0190 (7) 0.0002 (7) 0.0047 (6) −0.0041 (6)
C14 0.0357 (9) 0.0240 (8) 0.0222 (8) 0.0001 (7) 0.0023 (7) 0.0001 (6)
C15 0.0327 (9) 0.0292 (9) 0.0289 (8) −0.0041 (7) 0.0057 (7) −0.0016 (7)
C16 0.0314 (9) 0.0340 (10) 0.0294 (9) 0.0024 (7) 0.0020 (7) −0.0030 (7)
C17 0.0385 (10) 0.0275 (9) 0.0293 (9) 0.0056 (7) 0.0036 (7) 0.0030 (7)
C18 0.0345 (9) 0.0259 (9) 0.0283 (8) −0.0012 (7) 0.0071 (7) 0.0034 (7)

Geometric parameters (Å, °)

O1—C1 1.2476 (17) C8—H8 0.9500
O2—C4 1.3647 (17) C9—C10 1.385 (2)
O2—C12 1.4522 (18) C9—H9 0.9500
N1—C1 1.3763 (19) C10—C11 1.386 (2)
N1—N2 1.3780 (15) C10—H10 0.9500
N1—C5 1.4605 (18) C11—H11 0.9500
N2—C4 1.2959 (18) C12—C13 1.502 (2)
C1—C2 1.448 (2) C12—H12A 0.9900
C2—C3 1.347 (2) C12—H12B 0.9900
C2—H2 0.9500 C13—C18 1.390 (2)
C3—C4 1.429 (2) C13—C14 1.392 (2)
C3—H3 0.9500 C14—C15 1.385 (2)
C5—C6 1.507 (2) C14—H14 0.9500
C5—H5A 0.9900 C15—C16 1.385 (2)
C5—H5B 0.9900 C15—H15 0.9500
C6—C11 1.391 (2) C16—C17 1.383 (2)
C6—C7 1.392 (2) C16—H16 0.9500
C7—C8 1.389 (2) C17—C18 1.381 (2)
C7—H7 0.9500 C17—H17 0.9500
C8—C9 1.385 (2) C18—H18 0.9500
C4—O2—C12 117.36 (12) C10—C9—H9 120.1
C1—N1—N2 126.19 (12) C8—C9—H9 120.1
C1—N1—C5 119.33 (12) C9—C10—C11 120.34 (15)
N2—N1—C5 114.18 (11) C9—C10—H10 119.8
C4—N2—N1 115.86 (12) C11—C10—H10 119.8
O1—C1—N1 120.95 (14) C10—C11—C6 120.47 (15)
O1—C1—C2 124.38 (14) C10—C11—H11 119.8
N1—C1—C2 114.67 (13) C6—C11—H11 119.8
C3—C2—C1 120.56 (14) O2—C12—C13 113.20 (12)
C3—C2—H2 119.7 O2—C12—H12A 108.9
C1—C2—H2 119.7 C13—C12—H12A 108.9
C2—C3—C4 118.12 (14) O2—C12—H12B 108.9
C2—C3—H3 120.9 C13—C12—H12B 108.9
C4—C3—H3 120.9 H12A—C12—H12B 107.8
N2—C4—O2 119.42 (13) C18—C13—C14 118.68 (15)
N2—C4—C3 124.59 (13) C18—C13—C12 121.80 (14)
O2—C4—C3 115.98 (13) C14—C13—C12 119.51 (14)
N1—C5—C6 112.22 (12) C15—C14—C13 120.64 (15)
N1—C5—H5A 109.2 C15—C14—H14 119.7
C6—C5—H5A 109.2 C13—C14—H14 119.7
N1—C5—H5B 109.2 C14—C15—C16 119.97 (16)
C6—C5—H5B 109.2 C14—C15—H15 120.0
H5A—C5—H5B 107.9 C16—C15—H15 120.0
C11—C6—C7 118.77 (14) C17—C16—C15 119.76 (16)
C11—C6—C5 121.93 (14) C17—C16—H16 120.1
C7—C6—C5 119.28 (14) C15—C16—H16 120.1
C8—C7—C6 120.80 (15) C18—C17—C16 120.19 (15)
C8—C7—H7 119.6 C18—C17—H17 119.9
C6—C7—H7 119.6 C16—C17—H17 119.9
C9—C8—C7 119.86 (15) C17—C18—C13 120.74 (15)
C9—C8—H8 120.1 C17—C18—H18 119.6
C7—C8—H8 120.1 C13—C18—H18 119.6
C10—C9—C8 119.75 (15)
C1—N1—N2—C4 −0.3 (2) C11—C6—C7—C8 0.7 (2)
C5—N1—N2—C4 −173.91 (12) C5—C6—C7—C8 178.90 (13)
N2—N1—C1—O1 −179.53 (13) C6—C7—C8—C9 −0.9 (2)
C5—N1—C1—O1 −6.3 (2) C7—C8—C9—C10 0.2 (2)
N2—N1—C1—C2 0.8 (2) C8—C9—C10—C11 0.5 (2)
C5—N1—C1—C2 174.04 (12) C9—C10—C11—C6 −0.6 (2)
O1—C1—C2—C3 179.70 (14) C7—C6—C11—C10 0.0 (2)
N1—C1—C2—C3 −0.6 (2) C5—C6—C11—C10 −178.11 (14)
C1—C2—C3—C4 0.1 (2) C4—O2—C12—C13 −72.05 (17)
N1—N2—C4—O2 −179.59 (11) O2—C12—C13—C18 −28.7 (2)
N1—N2—C4—C3 −0.3 (2) O2—C12—C13—C14 152.30 (13)
C12—O2—C4—N2 −3.1 (2) C18—C13—C14—C15 1.5 (2)
C12—O2—C4—C3 177.58 (12) C12—C13—C14—C15 −179.46 (14)
C2—C3—C4—N2 0.4 (2) C13—C14—C15—C16 −0.6 (2)
C2—C3—C4—O2 179.72 (13) C14—C15—C16—C17 −0.3 (2)
C1—N1—C5—C6 −88.39 (16) C15—C16—C17—C18 0.3 (2)
N2—N1—C5—C6 85.65 (14) C16—C17—C18—C13 0.7 (2)
N1—C5—C6—C11 −38.55 (18) C14—C13—C18—C17 −1.6 (2)
N1—C5—C6—C7 143.33 (13) C12—C13—C18—C17 179.41 (14)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 ring.
D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.95 2.38 3.2906 (19) 161 (19)
C11—H11···N2 0.95 2.49 3.126 (2) 124
C11—H11···Cg3 0.95 2.98 3.7103 (17) 135
C17—H17···Cg3ii 0.95 2.98 3.6991 (17) 133

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x, −y+1, z−1/2.

Table 2 Comparative geometrical parameters (Å) for selected Cg—Cg Π stacking interaction, Cg1 is the centroid of the N1,N2,C1-C4 ring (Symmetry codes: 1/2-X,1/2-Y,1-Z).

CgI—CgJ Cg—Cg(Å) CgIPerp(Å) CgjPerp(Å) Slippage(Å)
Cg1—Cg1 3.6867 (10) 3.224 3.224 1.789

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2404).

References

  1. Li, H. S., Ling, Y., Guo, Y. L., Yang, X. L. & Chen, F. H. (2005). Chin. J. Org. Chem. 25, 204–207.
  2. Liu, W. D., Li, Z. W., Li, Z. Y., Wang, X. G. & Gao, B. D. (2005). Chin. J. Org. Chem. 25, 445–448.
  3. Loksha, Y. M., Pedersen, E. B., Colla, P. L. & Loddo, R. (2007). J. Heterocycl. Chem. , 44, 1351–1356.
  4. Rigaku/MSC (2009). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  5. Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800 (Synthesis and Chemistry of Agrochemicals VI), pp. 74–84.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Xu, H., Zou, X. M. & Yang, H. Z. (2006). Pest Manag. Sci. 62, 522–530. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011597/fj2404sup1.cif

e-67-o1042-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011597/fj2404Isup2.hkl

e-67-o1042-Isup2.hkl (169.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES