Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):m571–m572. doi: 10.1107/S1600536811012657

Rubidium 2,4,6-trioxo-1,3-diazinan-5-ide–1,3-diazinane-2,4,6-trione–water (1/1/1)

Marlena Gryl a,*, Katarzyna Stadnicka a
PMCID: PMC3089342  PMID: 21754300

Abstract

The asymmetric unit of the title compound, Rb+·C4H3N2O3 ·C4H4N2O3·H2O, consists of one rubidium cation, a barbituric acid mol­ecule, a barbiturate anion and one water mol­ecule. The rubidium ion has seven close-contact inter­actions with O atoms, with Rb⋯O distances ranging from 2.8594 (16) to 3.2641 (14) Å. These seven O atoms together with an eighth O atom at 3.492 (2) Å away from Rb form a distorted polyhedron with shape inter­mediate between an anti­prism and a dodeca­hedron. The Rb+ ions connect layers built of organic components and water mol­ecules linked via N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the crystal structures of selected barbiturates, see: Xiong et al. (2003); Gryl et al. (2008, 2011); Braga et al. (2010); Garcia et al. (2010); Ivanova & Spiteller (2010) and for those of rubidium salts, see: Clegg & Liddle (2004); Yıldırım et al. (2008). For classification of hydrogen-bond systems according to graph-set theory, see: Bernstein et al. (1995).graphic file with name e-67-0m571-scheme1.jpg

Experimental

Crystal data

  • Rb+·C4H3N2O3 ·C4H4N2O3·H2O

  • M r = 358.66

  • Monoclinic, Inline graphic

  • a = 9.8810 (1) Å

  • b = 19.6790 (5) Å

  • c = 6.4530 (3) Å

  • β = 108.26 (2)°

  • V = 1191.59 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.20 mm−1

  • T = 293 K

  • 0.43 × 0.23 × 0.21 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) T min = 0.266, T max = 0.473

  • 17623 measured reflections

  • 2555 independent reflections

  • 2239 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.059

  • S = 1.03

  • 2555 reflections

  • 199 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012657/vm2087sup1.cif

e-67-0m571-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012657/vm2087Isup2.hkl

e-67-0m571-Isup2.hkl (122.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O6Bi 0.88 (1) 1.90 (1) 2.769 (2) 172 (2)
N3A—H3A⋯O4B 0.86 (1) 1.84 (1) 2.694 (2) 175 (2)
N1B—H1B⋯O2Aii 0.88 (1) 1.94 (1) 2.820 (2) 175 (2)
N3B—H3B⋯O4A 0.87 (1) 2.12 (1) 2.975 (2) 169 (2)
O1W—H1W⋯O6Biii 0.84 (1) 1.87 (1) 2.700 (2) 171 (2)
O1W—H2W⋯O4Aiv 0.83 (1) 2.08 (1) 2.898 (2) 170 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the X-ray Diffraction Laboratory. Faculty of Chemistry, Jagiellonian University, for making the Nonius KappaCCD diffractometer available. This work was partially supported by the Polish Ministry of Science and Higher Education: grant No. N N204 316537.

supplementary crystallographic information

Comment

Recently we have reported structures for three polymorphic forms of barbituric acid and urea addition compounds (Gryl et al., 2008) for two of which a charge density analysis was also performed (Gryl et al., 2011). Barbituric acid appeared as a valuable component in designing new, functional materials and in particular polar materials (Xiong, et al., 2003). However many attempts to design and obtain polar barbiturates failed (see for example Ivanova & Spiteller, 2010). Herein we report the structure of the title addition compound (I), the asymmetric unit of which is comprised of a rubidium cation, barbiturate anion, barbituric acid molecule and one water molecule (Fig. 1). Unfortunately, like for many barbiturates, the structure is centrosymmetric (space group P21/c). Each Rb1 cation is surrounded by seven oxygen atoms and bridged by O6a (x - 1, y, z) and O2b (-x + 1, y + 1/2, -z + 1/2) to Rb1 (x, -y+1/2, z + 1/2) and by O2b (x, -y + 1/2, z - 1/2) and O6a (x-1, -y + 1/2, z - 1/2) to Rb1 (x, -y + 1/2, z - 1/2) (Fig. 2).

All barbiturate NH groups and water molecules act as hydrogen bond donors. The hydrogen bond geometry is given in Table 1. There are considerable differences in the accepting properties of the carbonyl oxygen atoms. In the barbituric acid molecule, only atom O4a is a hydrogen bond acceptor from O1W, whereas atoms O2a and O6a interact with Rb ions. A different situation is observed in the barbituriate ion: atom O6b is an acceptor of two hydrogen bonds from O1W and N1a whereas atoms O2b and O4b are both involved in interactions with rubidium ions. The structure is comprised of layers built of barbituric acid molecules and barbiturate anions connected by hydrogen bonds (Fig. 3). Graph-set descriptors R22(8) and R86(28) were assigned to the hydrogen bonds according to Bernstein et al., (1995). The two ring systems of R22(8) are formed between barbiturate anions and barbituric acid molecules by crystallographically different hydrogen bonds. In the R86(28) ring formation additionally two water molecules act as hydrogen bond donors. The layers, parallel to ab, are joined together into a three dimensional structure due to interactions of Rb1 cations with oxygen atoms from barbiturate anions, barbituric acid molecules and water molecules (Fig. 4).

Experimental

The title compound was synthesized by mixing aqueous solutions of barbituric acid and rubidium carbonate prepared at 323 K using a water bath. Single crystals suitable for X-ray diffraction were obtained from ethanol solution by slow evaporation at ambient conditions.

Refinement

All hydrogen atoms of N—H and O—H groups were found in difference Fourier maps and refined in a riding model assuming N—H = 0.88 (1) Å, O—H = 0.84 (1) Å and Uiso = 1.2Ueq of the parent atom. Hydrogen atoms of CH and CH2 groups were found in difference Fourier maps and refined from geometrical positions assuming C—H = 0.97 Å for CH and C—H = 0.93 Å for CH2 groups and using riding model with Uiso=1.2Ueq (C5A and C5B, respectively).

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title addition compound showing displacement ellipsoids drawn at the 50% probability level (H atoms are shown as spheres of arbitrary radii). The atoms of barbituric acid molecule are marked by the letter a, whereas those of barbiturate anion with the letter b.

Fig. 2.

Fig. 2.

Rubidium polyhedra of Rb1v, Rb1 and Rb1viii joined by edges O6aii, O2bix and O2bvii, O6aiv with Rb—Rb distance of 4.1988 (3) Å. Symmetry codes: (i) x - 1, -y + 1/2, z + 1/2; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) x - 1, -y + 1/2, z - 1/2; (v) x, -y + 1/2, z + 1/2; (vi) x - 1, y, z - 1; (vii) -x + 1, -y, -z; (viii) x, -y + 1/2, z - 1/2; (ix) -x + 1, y + 1/2, -z + 1/2; (x) -x + 1, y + 1/2, -z - 1/2.

Fig. 3.

Fig. 3.

Hydrogen bond scheme in the organic layer parallel to ab at z = 0.25. Hydrogen bond graph-set descriptors R22(8) (two kinds) and R86(28) are given according to Bernstein et al., (1995).

Fig. 4.

Fig. 4.

View of the packing along [100] showing the Rb cations in between the layers of organic components and water molecules.

Crystal data

Rb+·C4H4N2O3·C4H5N2O3·H2O F(000) = 712
Mr = 358.66 Dx = 1.999 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3522 reflections
a = 9.8810 (1) Å θ = 1.0–30.0°
b = 19.6790 (5) Å µ = 4.20 mm1
c = 6.4530 (3) Å T = 293 K
β = 108.26 (2)° Block, colorless
V = 1191.59 (15) Å3 0.43 × 0.23 × 0.21 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2555 independent reflections
Radiation source: fine-focus sealed tube 2239 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.037
Detector resolution: 9 pixels mm-1 θmax = 27.0°, θmin = 3.5°
φ and ω scans to fill Ewald sphere h = −12→11
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) k = 0→25
Tmin = 0.266, Tmax = 0.473 l = 0→8
17623 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.3427P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2555 reflections Δρmax = 0.27 e Å3
199 parameters Δρmin = −0.30 e Å3
6 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
0 constraints Extinction coefficient: 0
Primary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rb1 0.291837 (19) 0.181732 (10) 0.12045 (3) 0.03861 (8)
N1A 0.83901 (16) 0.22220 (7) 0.3062 (2) 0.0284 (3)
H1A 0.830 (2) 0.2666 (5) 0.295 (3) 0.034*
C2A 0.71713 (19) 0.18635 (8) 0.2905 (3) 0.0262 (4)
O2A 0.60363 (14) 0.21479 (6) 0.2672 (2) 0.0390 (3)
N3A 0.72641 (16) 0.11731 (7) 0.2984 (2) 0.0267 (3)
H3A 0.6475 (14) 0.0959 (9) 0.281 (3) 0.032*
C4A 0.84786 (19) 0.08055 (9) 0.3319 (3) 0.0269 (4)
O4A 0.84464 (14) 0.01867 (6) 0.3376 (2) 0.0368 (3)
C5A 0.98315 (19) 0.11930 (9) 0.3628 (3) 0.0310 (4)
H5A1 1.0442 0.1123 0.5115 0.037*
H5A2 1.0314 0.0999 0.2670 0.037*
C6A 0.96859 (19) 0.19423 (9) 0.3212 (3) 0.0272 (4)
O6A 1.06609 (14) 0.22942 (7) 0.3061 (2) 0.0375 (3)
N1B 0.42573 (15) −0.14265 (7) 0.2580 (2) 0.0289 (3)
H1B 0.417 (2) −0.1870 (5) 0.259 (3) 0.035*
C2B 0.55857 (18) −0.11709 (8) 0.2913 (3) 0.0280 (4)
O2B 0.66394 (15) −0.15406 (7) 0.3276 (3) 0.0447 (4)
N3B 0.56512 (15) −0.04808 (7) 0.2804 (2) 0.0267 (3)
H3B 0.6520 (12) −0.0339 (10) 0.304 (3) 0.032*
C4B 0.44849 (18) −0.00466 (8) 0.2415 (3) 0.0246 (3)
O4B 0.47093 (14) 0.05801 (6) 0.2357 (2) 0.0325 (3)
C5B 0.31602 (18) −0.03460 (8) 0.2126 (3) 0.0266 (4)
H5B 0.2358 −0.0073 0.1893 0.032*
C6B 0.30235 (18) −0.10459 (9) 0.2180 (3) 0.0256 (3)
O6B 0.18751 (13) −0.13782 (6) 0.1870 (2) 0.0378 (3)
O1W 0.07639 (16) 0.08325 (8) −0.0724 (3) 0.0478 (4)
H1W −0.0078 (14) 0.0973 (12) −0.120 (4) 0.057*
H2W 0.090 (3) 0.0514 (9) −0.147 (4) 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1 0.02804 (11) 0.03333 (12) 0.05520 (14) 0.00282 (7) 0.01410 (9) 0.00032 (8)
N1A 0.0278 (8) 0.0187 (7) 0.0413 (8) −0.0023 (6) 0.0148 (6) −0.0005 (6)
C2A 0.0261 (9) 0.0205 (8) 0.0338 (9) −0.0004 (6) 0.0120 (7) −0.0006 (7)
O2A 0.0269 (7) 0.0209 (6) 0.0718 (9) 0.0017 (5) 0.0194 (6) 0.0009 (6)
N3A 0.0232 (7) 0.0176 (7) 0.0412 (8) −0.0019 (6) 0.0127 (6) −0.0002 (6)
C4A 0.0291 (9) 0.0251 (8) 0.0274 (8) 0.0020 (7) 0.0102 (7) 0.0018 (7)
O4A 0.0335 (7) 0.0198 (6) 0.0569 (8) 0.0035 (5) 0.0138 (6) 0.0021 (6)
C5A 0.0260 (9) 0.0284 (9) 0.0394 (9) 0.0028 (7) 0.0115 (7) 0.0047 (7)
C6A 0.0253 (9) 0.0282 (9) 0.0289 (8) −0.0017 (7) 0.0098 (7) −0.0009 (7)
O6A 0.0288 (7) 0.0344 (7) 0.0528 (8) −0.0062 (6) 0.0177 (6) 0.0006 (6)
N1B 0.0239 (7) 0.0164 (7) 0.0452 (8) 0.0016 (6) 0.0093 (6) 0.0015 (6)
C2B 0.0240 (9) 0.0223 (8) 0.0376 (9) 0.0012 (7) 0.0095 (7) 0.0010 (7)
O2B 0.0271 (7) 0.0270 (7) 0.0791 (10) 0.0074 (6) 0.0152 (7) 0.0045 (7)
N3B 0.0218 (7) 0.0217 (7) 0.0373 (8) −0.0005 (6) 0.0102 (6) 0.0007 (6)
C4B 0.0276 (9) 0.0208 (8) 0.0245 (8) 0.0013 (6) 0.0071 (6) 0.0010 (6)
O4B 0.0317 (7) 0.0185 (6) 0.0468 (7) −0.0007 (5) 0.0115 (6) 0.0031 (5)
C5B 0.0232 (8) 0.0205 (8) 0.0342 (9) 0.0042 (6) 0.0061 (7) 0.0004 (7)
C6B 0.0229 (8) 0.0223 (8) 0.0293 (8) 0.0005 (6) 0.0050 (6) −0.0011 (7)
O6B 0.0221 (6) 0.0215 (6) 0.0661 (9) −0.0010 (5) 0.0085 (6) −0.0024 (6)
O1W 0.0315 (8) 0.0473 (9) 0.0610 (10) 0.0102 (7) 0.0094 (7) −0.0118 (7)

Geometric parameters (Å, °)

Rb1—O1W 2.8594 (16) O6A—Rb1v 2.9942 (13)
Rb1—O4B 2.9645 (12) O6A—Rb1vi 3.0517 (13)
Rb1—O6Ai 2.9942 (13) N1B—C2B 1.358 (2)
Rb1—O2A 2.9972 (13) N1B—C6B 1.384 (2)
Rb1—O6Aii 3.0517 (13) N1B—H1B 0.878 (9)
Rb1—O2Biii 3.1049 (16) C2B—O2B 1.231 (2)
Rb1—O2Biv 3.2641 (14) C2B—N3B 1.363 (2)
N1A—C6A 1.369 (2) O2B—Rb1iii 3.1049 (16)
N1A—C2A 1.372 (2) O2B—Rb1vii 3.2641 (14)
N1A—H1A 0.879 (9) O2B—Rb1viii 3.4923 (16)
C2A—O2A 1.220 (2) N3B—C4B 1.393 (2)
C2A—N3A 1.362 (2) N3B—H3B 0.870 (9)
N3A—C4A 1.359 (2) C4B—O4B 1.256 (2)
N3A—H3A 0.862 (9) C4B—C5B 1.394 (2)
C4A—O4A 1.219 (2) C5B—C6B 1.386 (2)
C4A—C5A 1.497 (2) C5B—H5B 0.9300
C5A—C6A 1.498 (2) C6B—O6B 1.270 (2)
C5A—H5A1 0.9700 O1W—H1W 0.839 (10)
C5A—H5A2 0.9700 O1W—H2W 0.828 (10)
C6A—O6A 1.215 (2)
O1W—Rb1—O4B 81.78 (4) C6A—N1A—H1A 118.1 (14)
O1W—Rb1—O6Ai 80.80 (4) C2A—N1A—H1A 116.4 (14)
O4B—Rb1—O6Ai 128.17 (4) O2A—C2A—N3A 120.73 (16)
O1W—Rb1—O2A 146.72 (4) O2A—C2A—N1A 121.67 (15)
O4B—Rb1—O2A 68.00 (3) N3A—C2A—N1A 117.59 (15)
O6Ai—Rb1—O2A 128.79 (4) C2A—O2A—Rb1 138.91 (11)
O1W—Rb1—O6Aii 79.02 (4) C4A—N3A—C2A 125.64 (15)
O4B—Rb1—O6Aii 153.12 (4) C4A—N3A—H3A 118.6 (14)
O6Ai—Rb1—O6Aii 66.76 (3) C2A—N3A—H3A 115.8 (14)
O2A—Rb1—O6Aii 123.40 (4) O4A—C4A—N3A 120.43 (16)
O1W—Rb1—O2Biii 77.21 (4) O4A—C4A—C5A 122.37 (16)
O4B—Rb1—O2Biii 80.94 (4) N3A—C4A—C5A 117.20 (15)
O6Ai—Rb1—O2Biii 140.12 (4) C6A—C5A—C4A 116.49 (15)
O2A—Rb1—O2Biii 84.36 (4) C6A—C5A—H5A1 108.2
O6Aii—Rb1—O2Biii 76.60 (4) C4A—C5A—H5A1 108.2
O1W—Rb1—O2Biv 140.64 (4) C6A—C5A—H5A2 108.2
O4B—Rb1—O2Biv 137.49 (4) C4A—C5A—H5A2 108.2
O6Ai—Rb1—O2Biv 75.00 (4) H5A1—C5A—H5A2 107.3
O2A—Rb1—O2Biv 70.21 (3) O6A—C6A—N1A 120.85 (16)
O6Aii—Rb1—O2Biv 63.09 (4) O6A—C6A—C5A 122.79 (16)
O2Biii—Rb1—O2Biv 102.47 (4) N1A—C6A—C5A 116.33 (15)
O1W—Rb1—O2Bviii 100.15 (4) C6A—O6A—Rb1v 124.21 (12)
O4B—Rb1—O2Bviii 75.04 (3) C6A—O6A—Rb1vi 134.92 (12)
O6Ai—Rb1—O2Bviii 60.78 (3) Rb1v—O6A—Rb1vi 87.97 (3)
O2A—Rb1—O2Bviii 85.63 (4) C2B—N1B—C6B 125.45 (15)
O6Aii—Rb1—O2Bviii 126.81 (3) C2B—N1B—H1B 117.6 (15)
O2Biii—Rb1—O2Bviii 155.95 (5) C6B—N1B—H1B 116.9 (15)
O2Biv—Rb1—O2Bviii 94.58 (4) O2B—C2B—N1B 121.94 (16)
O1W—Rb1—C2Biii 82.13 (4) O2B—C2B—N3B 123.22 (16)
O4B—Rb1—C2Biii 63.29 (4) N1B—C2B—N3B 114.84 (15)
O6Ai—Rb1—C2Biii 157.33 (4) O2B—C2B—Rb1iii 54.65 (10)
O2A—Rb1—C2Biii 72.24 (4) N1B—C2B—Rb1iii 110.33 (11)
O6Aii—Rb1—C2Biii 95.40 (4) N3B—C2B—Rb1iii 105.84 (11)
O2Biii—Rb1—C2Biii 18.87 (4) C2B—O2B—Rb1iii 106.49 (12)
O2Biv—Rb1—C2Biii 110.36 (4) C2B—O2B—Rb1vii 133.05 (12)
O2Bviii—Rb1—C2Biii 137.58 (4) Rb1iii—O2B—Rb1vii 82.45 (3)
O1W—Rb1—Rb1ix 126.08 (3) C2B—O2B—Rb1viii 96.57 (11)
O4B—Rb1—Rb1ix 118.45 (2) Rb1iii—O2B—Rb1viii 155.95 (5)
O6Ai—Rb1—Rb1ix 46.58 (3) Rb1vii—O2B—Rb1viii 76.76 (3)
O2A—Rb1—Rb1ix 82.29 (3) C2B—N3B—C4B 124.81 (15)
O6Aii—Rb1—Rb1ix 88.18 (3) C2B—N3B—H3B 111.8 (14)
O2Biii—Rb1—Rb1ix 149.52 (3) C4B—N3B—H3B 123.4 (14)
O2Biv—Rb1—Rb1ix 47.14 (3) O4B—C4B—N3B 117.65 (15)
O2Bviii—Rb1—Rb1ix 49.18 (2) O4B—C4B—C5B 125.34 (16)
C2Biii—Rb1—Rb1ix 151.63 (3) N3B—C4B—C5B 117.01 (15)
O1W—Rb1—Rb1x 106.17 (3) C4B—O4B—Rb1 135.81 (11)
O4B—Rb1—Rb1x 125.08 (2) C6B—C5B—C4B 120.79 (15)
O6Ai—Rb1—Rb1x 106.63 (3) C6B—C5B—H5B 119.6
O2A—Rb1—Rb1x 81.74 (3) C4B—C5B—H5B 119.6
O6Aii—Rb1—Rb1x 45.45 (3) O6B—C6B—C5B 126.67 (16)
O2Biii—Rb1—Rb1x 50.41 (3) O6B—C6B—N1B 116.23 (15)
O2Biv—Rb1—Rb1x 54.06 (3) C5B—C6B—N1B 117.09 (15)
O2Bviii—Rb1—Rb1x 148.58 (2) Rb1—O1W—H1W 117.0 (18)
C2Biii—Rb1—Rb1x 64.29 (3) Rb1—O1W—H2W 122.1 (19)
Rb1ix—Rb1—Rb1x 100.428 (8) H1W—O1W—H2W 111 (3)
C6A—N1A—C2A 125.34 (15)
C6A—N1A—C2A—O2A −176.43 (17) C6B—N1B—C2B—O2B 179.49 (17)
C6A—N1A—C2A—N3A 2.6 (3) C6B—N1B—C2B—N3B −0.8 (3)
O2A—C2A—N3A—C4A −177.35 (17) O2B—C2B—N3B—C4B −179.42 (17)
N1A—C2A—N3A—C4A 3.6 (3) N1B—C2B—N3B—C4B 0.8 (2)
C2A—N3A—C4A—O4A 179.49 (17) C2B—N3B—C4B—O4B −179.93 (16)
C2A—N3A—C4A—C5A 0.0 (2) C2B—N3B—C4B—C5B 0.2 (2)
O4A—C4A—C5A—C6A 171.78 (16) O4B—C4B—C5B—C6B 178.77 (16)
N3A—C4A—C5A—C6A −8.7 (2) N3B—C4B—C5B—C6B −1.4 (2)
C2A—N1A—C6A—O6A 170.35 (17) C4B—C5B—C6B—O6B −177.57 (17)
C2A—N1A—C6A—C5A −11.3 (2) C4B—C5B—C6B—N1B 1.4 (2)
C4A—C5A—C6A—O6A −167.85 (17) C2B—N1B—C6B—O6B 178.77 (17)
C4A—C5A—C6A—N1A 13.8 (2) C2B—N1B—C6B—C5B −0.3 (3)

Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+1, y+1/2, −z+1/2; (v) x+1, y, z; (vi) x+1, −y+1/2, z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1, −y, −z+1; (ix) x, −y+1/2, z+1/2; (x) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O6Biv 0.88 (1) 1.90 (1) 2.769 (2) 172 (2)
N3A—H3A···O4B 0.86 (1) 1.84 (1) 2.694 (2) 175 (2)
N1B—H1B···O2Avii 0.88 (1) 1.94 (1) 2.820 (2) 175 (2)
N3B—H3B···O4A 0.87 (1) 2.12 (1) 2.975 (2) 169 (2)
O1W—H1W···O6Bxi 0.84 (1) 1.87 (1) 2.700 (2) 171 (2)
O1W—H2W···O4Aiii 0.83 (1) 2.08 (1) 2.898 (2) 170 (3)

Symmetry codes: (iv) −x+1, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (xi) −x, −y, −z; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2087).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Braga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715–7717. [DOI] [PubMed]
  4. Clegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1492–m1494.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Garcia, H. C., Diniz, R., Yoshida, M. I. & Oliveira, L. F. C. (2010). J. Mol. Struct. 978, 79–85.
  8. Gryl, M., Krawczuk, A. & Stadnicka, K. (2008). Acta Cryst. B64, 623–632. [DOI] [PubMed]
  9. Gryl, M., Krawczuk-Pantula, A. & Stadnicka, K. (2011). Acta Cryst. B67, 144–154. [DOI] [PubMed]
  10. Ivanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470–2474.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Xiong, Y., He, C., An, T.-C., Cha, C.-H., Zhu, X.-H. & Jiang, S. (2003). Transition Met. Chem. 28, 69–73.
  16. Yıldırım, S. Ö., McKee, V., Khardli, F.-Z., Mimouni, M. & Hadda, T. B. (2008). Acta Cryst. E64, m154–m155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012657/vm2087sup1.cif

e-67-0m571-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012657/vm2087Isup2.hkl

e-67-0m571-Isup2.hkl (122.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES