Abstract
The asymmetric unit of the title compound, Rb+·C4H3N2O3 −·C4H4N2O3·H2O, consists of one rubidium cation, a barbituric acid molecule, a barbiturate anion and one water molecule. The rubidium ion has seven close-contact interactions with O atoms, with Rb⋯O distances ranging from 2.8594 (16) to 3.2641 (14) Å. These seven O atoms together with an eighth O atom at 3.492 (2) Å away from Rb form a distorted polyhedron with shape intermediate between an antiprism and a dodecahedron. The Rb+ ions connect layers built of organic components and water molecules linked via N—H⋯O and O—H⋯O hydrogen bonds.
Related literature
For the crystal structures of selected barbiturates, see: Xiong et al. (2003 ▶); Gryl et al. (2008 ▶, 2011 ▶); Braga et al. (2010 ▶); Garcia et al. (2010 ▶); Ivanova & Spiteller (2010 ▶) and for those of rubidium salts, see: Clegg & Liddle (2004 ▶); Yıldırım et al. (2008 ▶). For classification of hydrogen-bond systems according to graph-set theory, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
Rb+·C4H3N2O3 −·C4H4N2O3·H2O
M r = 358.66
Monoclinic,
a = 9.8810 (1) Å
b = 19.6790 (5) Å
c = 6.4530 (3) Å
β = 108.26 (2)°
V = 1191.59 (15) Å3
Z = 4
Mo Kα radiation
μ = 4.20 mm−1
T = 293 K
0.43 × 0.23 × 0.21 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997 ▶) T min = 0.266, T max = 0.473
17623 measured reflections
2555 independent reflections
2239 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.024
wR(F 2) = 0.059
S = 1.03
2555 reflections
199 parameters
6 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.27 e Å−3
Δρmin = −0.30 e Å−3
Data collection: COLLECT (Nonius, 1998 ▶); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO (Otwinowski & Minor, 1997 ▶) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: Mercury (Macrae et al., 2006 ▶) and ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012657/vm2087sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012657/vm2087Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1A—H1A⋯O6Bi | 0.88 (1) | 1.90 (1) | 2.769 (2) | 172 (2) |
| N3A—H3A⋯O4B | 0.86 (1) | 1.84 (1) | 2.694 (2) | 175 (2) |
| N1B—H1B⋯O2Aii | 0.88 (1) | 1.94 (1) | 2.820 (2) | 175 (2) |
| N3B—H3B⋯O4A | 0.87 (1) | 2.12 (1) | 2.975 (2) | 169 (2) |
| O1W—H1W⋯O6Biii | 0.84 (1) | 1.87 (1) | 2.700 (2) | 171 (2) |
| O1W—H2W⋯O4Aiv | 0.83 (1) | 2.08 (1) | 2.898 (2) | 170 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
The authors thank the X-ray Diffraction Laboratory. Faculty of Chemistry, Jagiellonian University, for making the Nonius KappaCCD diffractometer available. This work was partially supported by the Polish Ministry of Science and Higher Education: grant No. N N204 316537.
supplementary crystallographic information
Comment
Recently we have reported structures for three polymorphic forms of barbituric acid and urea addition compounds (Gryl et al., 2008) for two of which a charge density analysis was also performed (Gryl et al., 2011). Barbituric acid appeared as a valuable component in designing new, functional materials and in particular polar materials (Xiong, et al., 2003). However many attempts to design and obtain polar barbiturates failed (see for example Ivanova & Spiteller, 2010). Herein we report the structure of the title addition compound (I), the asymmetric unit of which is comprised of a rubidium cation, barbiturate anion, barbituric acid molecule and one water molecule (Fig. 1). Unfortunately, like for many barbiturates, the structure is centrosymmetric (space group P21/c). Each Rb1 cation is surrounded by seven oxygen atoms and bridged by O6a (x - 1, y, z) and O2b (-x + 1, y + 1/2, -z + 1/2) to Rb1 (x, -y+1/2, z + 1/2) and by O2b (x, -y + 1/2, z - 1/2) and O6a (x-1, -y + 1/2, z - 1/2) to Rb1 (x, -y + 1/2, z - 1/2) (Fig. 2).
All barbiturate NH groups and water molecules act as hydrogen bond donors. The hydrogen bond geometry is given in Table 1. There are considerable differences in the accepting properties of the carbonyl oxygen atoms. In the barbituric acid molecule, only atom O4a is a hydrogen bond acceptor from O1W, whereas atoms O2a and O6a interact with Rb ions. A different situation is observed in the barbituriate ion: atom O6b is an acceptor of two hydrogen bonds from O1W and N1a whereas atoms O2b and O4b are both involved in interactions with rubidium ions. The structure is comprised of layers built of barbituric acid molecules and barbiturate anions connected by hydrogen bonds (Fig. 3). Graph-set descriptors R22(8) and R86(28) were assigned to the hydrogen bonds according to Bernstein et al., (1995). The two ring systems of R22(8) are formed between barbiturate anions and barbituric acid molecules by crystallographically different hydrogen bonds. In the R86(28) ring formation additionally two water molecules act as hydrogen bond donors. The layers, parallel to ab, are joined together into a three dimensional structure due to interactions of Rb1 cations with oxygen atoms from barbiturate anions, barbituric acid molecules and water molecules (Fig. 4).
Experimental
The title compound was synthesized by mixing aqueous solutions of barbituric acid and rubidium carbonate prepared at 323 K using a water bath. Single crystals suitable for X-ray diffraction were obtained from ethanol solution by slow evaporation at ambient conditions.
Refinement
All hydrogen atoms of N—H and O—H groups were found in difference Fourier maps and refined in a riding model assuming N—H = 0.88 (1) Å, O—H = 0.84 (1) Å and Uiso = 1.2Ueq of the parent atom. Hydrogen atoms of CH and CH2 groups were found in difference Fourier maps and refined from geometrical positions assuming C—H = 0.97 Å for CH and C—H = 0.93 Å for CH2 groups and using riding model with Uiso=1.2Ueq (C5A and C5B, respectively).
Figures
Fig. 1.
Asymmetric unit of the title addition compound showing displacement ellipsoids drawn at the 50% probability level (H atoms are shown as spheres of arbitrary radii). The atoms of barbituric acid molecule are marked by the letter a, whereas those of barbiturate anion with the letter b.
Fig. 2.
Rubidium polyhedra of Rb1v, Rb1 and Rb1viii joined by edges O6aii, O2bix and O2bvii, O6aiv with Rb—Rb distance of 4.1988 (3) Å. Symmetry codes: (i) x - 1, -y + 1/2, z + 1/2; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) x - 1, -y + 1/2, z - 1/2; (v) x, -y + 1/2, z + 1/2; (vi) x - 1, y, z - 1; (vii) -x + 1, -y, -z; (viii) x, -y + 1/2, z - 1/2; (ix) -x + 1, y + 1/2, -z + 1/2; (x) -x + 1, y + 1/2, -z - 1/2.
Fig. 3.
Hydrogen bond scheme in the organic layer parallel to ab at z = 0.25. Hydrogen bond graph-set descriptors R22(8) (two kinds) and R86(28) are given according to Bernstein et al., (1995).
Fig. 4.
View of the packing along [100] showing the Rb cations in between the layers of organic components and water molecules.
Crystal data
| Rb+·C4H4N2O3−·C4H5N2O3·H2O | F(000) = 712 |
| Mr = 358.66 | Dx = 1.999 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3522 reflections |
| a = 9.8810 (1) Å | θ = 1.0–30.0° |
| b = 19.6790 (5) Å | µ = 4.20 mm−1 |
| c = 6.4530 (3) Å | T = 293 K |
| β = 108.26 (2)° | Block, colorless |
| V = 1191.59 (15) Å3 | 0.43 × 0.23 × 0.21 mm |
| Z = 4 |
Data collection
| Nonius KappaCCD diffractometer | 2555 independent reflections |
| Radiation source: fine-focus sealed tube | 2239 reflections with I > 2σ(I) |
| horizontally mounted graphite crystal | Rint = 0.037 |
| Detector resolution: 9 pixels mm-1 | θmax = 27.0°, θmin = 3.5° |
| φ and ω scans to fill Ewald sphere | h = −12→11 |
| Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) | k = 0→25 |
| Tmin = 0.266, Tmax = 0.473 | l = 0→8 |
| 17623 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0308P)2 + 0.3427P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.03 | (Δ/σ)max < 0.001 |
| 2555 reflections | Δρmax = 0.27 e Å−3 |
| 199 parameters | Δρmin = −0.30 e Å−3 |
| 6 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
| 0 constraints | Extinction coefficient: 0 |
| Primary atom site location: difference Fourier map |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Rb1 | 0.291837 (19) | 0.181732 (10) | 0.12045 (3) | 0.03861 (8) | |
| N1A | 0.83901 (16) | 0.22220 (7) | 0.3062 (2) | 0.0284 (3) | |
| H1A | 0.830 (2) | 0.2666 (5) | 0.295 (3) | 0.034* | |
| C2A | 0.71713 (19) | 0.18635 (8) | 0.2905 (3) | 0.0262 (4) | |
| O2A | 0.60363 (14) | 0.21479 (6) | 0.2672 (2) | 0.0390 (3) | |
| N3A | 0.72641 (16) | 0.11731 (7) | 0.2984 (2) | 0.0267 (3) | |
| H3A | 0.6475 (14) | 0.0959 (9) | 0.281 (3) | 0.032* | |
| C4A | 0.84786 (19) | 0.08055 (9) | 0.3319 (3) | 0.0269 (4) | |
| O4A | 0.84464 (14) | 0.01867 (6) | 0.3376 (2) | 0.0368 (3) | |
| C5A | 0.98315 (19) | 0.11930 (9) | 0.3628 (3) | 0.0310 (4) | |
| H5A1 | 1.0442 | 0.1123 | 0.5115 | 0.037* | |
| H5A2 | 1.0314 | 0.0999 | 0.2670 | 0.037* | |
| C6A | 0.96859 (19) | 0.19423 (9) | 0.3212 (3) | 0.0272 (4) | |
| O6A | 1.06609 (14) | 0.22942 (7) | 0.3061 (2) | 0.0375 (3) | |
| N1B | 0.42573 (15) | −0.14265 (7) | 0.2580 (2) | 0.0289 (3) | |
| H1B | 0.417 (2) | −0.1870 (5) | 0.259 (3) | 0.035* | |
| C2B | 0.55857 (18) | −0.11709 (8) | 0.2913 (3) | 0.0280 (4) | |
| O2B | 0.66394 (15) | −0.15406 (7) | 0.3276 (3) | 0.0447 (4) | |
| N3B | 0.56512 (15) | −0.04808 (7) | 0.2804 (2) | 0.0267 (3) | |
| H3B | 0.6520 (12) | −0.0339 (10) | 0.304 (3) | 0.032* | |
| C4B | 0.44849 (18) | −0.00466 (8) | 0.2415 (3) | 0.0246 (3) | |
| O4B | 0.47093 (14) | 0.05801 (6) | 0.2357 (2) | 0.0325 (3) | |
| C5B | 0.31602 (18) | −0.03460 (8) | 0.2126 (3) | 0.0266 (4) | |
| H5B | 0.2358 | −0.0073 | 0.1893 | 0.032* | |
| C6B | 0.30235 (18) | −0.10459 (9) | 0.2180 (3) | 0.0256 (3) | |
| O6B | 0.18751 (13) | −0.13782 (6) | 0.1870 (2) | 0.0378 (3) | |
| O1W | 0.07639 (16) | 0.08325 (8) | −0.0724 (3) | 0.0478 (4) | |
| H1W | −0.0078 (14) | 0.0973 (12) | −0.120 (4) | 0.057* | |
| H2W | 0.090 (3) | 0.0514 (9) | −0.147 (4) | 0.057* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Rb1 | 0.02804 (11) | 0.03333 (12) | 0.05520 (14) | 0.00282 (7) | 0.01410 (9) | 0.00032 (8) |
| N1A | 0.0278 (8) | 0.0187 (7) | 0.0413 (8) | −0.0023 (6) | 0.0148 (6) | −0.0005 (6) |
| C2A | 0.0261 (9) | 0.0205 (8) | 0.0338 (9) | −0.0004 (6) | 0.0120 (7) | −0.0006 (7) |
| O2A | 0.0269 (7) | 0.0209 (6) | 0.0718 (9) | 0.0017 (5) | 0.0194 (6) | 0.0009 (6) |
| N3A | 0.0232 (7) | 0.0176 (7) | 0.0412 (8) | −0.0019 (6) | 0.0127 (6) | −0.0002 (6) |
| C4A | 0.0291 (9) | 0.0251 (8) | 0.0274 (8) | 0.0020 (7) | 0.0102 (7) | 0.0018 (7) |
| O4A | 0.0335 (7) | 0.0198 (6) | 0.0569 (8) | 0.0035 (5) | 0.0138 (6) | 0.0021 (6) |
| C5A | 0.0260 (9) | 0.0284 (9) | 0.0394 (9) | 0.0028 (7) | 0.0115 (7) | 0.0047 (7) |
| C6A | 0.0253 (9) | 0.0282 (9) | 0.0289 (8) | −0.0017 (7) | 0.0098 (7) | −0.0009 (7) |
| O6A | 0.0288 (7) | 0.0344 (7) | 0.0528 (8) | −0.0062 (6) | 0.0177 (6) | 0.0006 (6) |
| N1B | 0.0239 (7) | 0.0164 (7) | 0.0452 (8) | 0.0016 (6) | 0.0093 (6) | 0.0015 (6) |
| C2B | 0.0240 (9) | 0.0223 (8) | 0.0376 (9) | 0.0012 (7) | 0.0095 (7) | 0.0010 (7) |
| O2B | 0.0271 (7) | 0.0270 (7) | 0.0791 (10) | 0.0074 (6) | 0.0152 (7) | 0.0045 (7) |
| N3B | 0.0218 (7) | 0.0217 (7) | 0.0373 (8) | −0.0005 (6) | 0.0102 (6) | 0.0007 (6) |
| C4B | 0.0276 (9) | 0.0208 (8) | 0.0245 (8) | 0.0013 (6) | 0.0071 (6) | 0.0010 (6) |
| O4B | 0.0317 (7) | 0.0185 (6) | 0.0468 (7) | −0.0007 (5) | 0.0115 (6) | 0.0031 (5) |
| C5B | 0.0232 (8) | 0.0205 (8) | 0.0342 (9) | 0.0042 (6) | 0.0061 (7) | 0.0004 (7) |
| C6B | 0.0229 (8) | 0.0223 (8) | 0.0293 (8) | 0.0005 (6) | 0.0050 (6) | −0.0011 (7) |
| O6B | 0.0221 (6) | 0.0215 (6) | 0.0661 (9) | −0.0010 (5) | 0.0085 (6) | −0.0024 (6) |
| O1W | 0.0315 (8) | 0.0473 (9) | 0.0610 (10) | 0.0102 (7) | 0.0094 (7) | −0.0118 (7) |
Geometric parameters (Å, °)
| Rb1—O1W | 2.8594 (16) | O6A—Rb1v | 2.9942 (13) |
| Rb1—O4B | 2.9645 (12) | O6A—Rb1vi | 3.0517 (13) |
| Rb1—O6Ai | 2.9942 (13) | N1B—C2B | 1.358 (2) |
| Rb1—O2A | 2.9972 (13) | N1B—C6B | 1.384 (2) |
| Rb1—O6Aii | 3.0517 (13) | N1B—H1B | 0.878 (9) |
| Rb1—O2Biii | 3.1049 (16) | C2B—O2B | 1.231 (2) |
| Rb1—O2Biv | 3.2641 (14) | C2B—N3B | 1.363 (2) |
| N1A—C6A | 1.369 (2) | O2B—Rb1iii | 3.1049 (16) |
| N1A—C2A | 1.372 (2) | O2B—Rb1vii | 3.2641 (14) |
| N1A—H1A | 0.879 (9) | O2B—Rb1viii | 3.4923 (16) |
| C2A—O2A | 1.220 (2) | N3B—C4B | 1.393 (2) |
| C2A—N3A | 1.362 (2) | N3B—H3B | 0.870 (9) |
| N3A—C4A | 1.359 (2) | C4B—O4B | 1.256 (2) |
| N3A—H3A | 0.862 (9) | C4B—C5B | 1.394 (2) |
| C4A—O4A | 1.219 (2) | C5B—C6B | 1.386 (2) |
| C4A—C5A | 1.497 (2) | C5B—H5B | 0.9300 |
| C5A—C6A | 1.498 (2) | C6B—O6B | 1.270 (2) |
| C5A—H5A1 | 0.9700 | O1W—H1W | 0.839 (10) |
| C5A—H5A2 | 0.9700 | O1W—H2W | 0.828 (10) |
| C6A—O6A | 1.215 (2) | ||
| O1W—Rb1—O4B | 81.78 (4) | C6A—N1A—H1A | 118.1 (14) |
| O1W—Rb1—O6Ai | 80.80 (4) | C2A—N1A—H1A | 116.4 (14) |
| O4B—Rb1—O6Ai | 128.17 (4) | O2A—C2A—N3A | 120.73 (16) |
| O1W—Rb1—O2A | 146.72 (4) | O2A—C2A—N1A | 121.67 (15) |
| O4B—Rb1—O2A | 68.00 (3) | N3A—C2A—N1A | 117.59 (15) |
| O6Ai—Rb1—O2A | 128.79 (4) | C2A—O2A—Rb1 | 138.91 (11) |
| O1W—Rb1—O6Aii | 79.02 (4) | C4A—N3A—C2A | 125.64 (15) |
| O4B—Rb1—O6Aii | 153.12 (4) | C4A—N3A—H3A | 118.6 (14) |
| O6Ai—Rb1—O6Aii | 66.76 (3) | C2A—N3A—H3A | 115.8 (14) |
| O2A—Rb1—O6Aii | 123.40 (4) | O4A—C4A—N3A | 120.43 (16) |
| O1W—Rb1—O2Biii | 77.21 (4) | O4A—C4A—C5A | 122.37 (16) |
| O4B—Rb1—O2Biii | 80.94 (4) | N3A—C4A—C5A | 117.20 (15) |
| O6Ai—Rb1—O2Biii | 140.12 (4) | C6A—C5A—C4A | 116.49 (15) |
| O2A—Rb1—O2Biii | 84.36 (4) | C6A—C5A—H5A1 | 108.2 |
| O6Aii—Rb1—O2Biii | 76.60 (4) | C4A—C5A—H5A1 | 108.2 |
| O1W—Rb1—O2Biv | 140.64 (4) | C6A—C5A—H5A2 | 108.2 |
| O4B—Rb1—O2Biv | 137.49 (4) | C4A—C5A—H5A2 | 108.2 |
| O6Ai—Rb1—O2Biv | 75.00 (4) | H5A1—C5A—H5A2 | 107.3 |
| O2A—Rb1—O2Biv | 70.21 (3) | O6A—C6A—N1A | 120.85 (16) |
| O6Aii—Rb1—O2Biv | 63.09 (4) | O6A—C6A—C5A | 122.79 (16) |
| O2Biii—Rb1—O2Biv | 102.47 (4) | N1A—C6A—C5A | 116.33 (15) |
| O1W—Rb1—O2Bviii | 100.15 (4) | C6A—O6A—Rb1v | 124.21 (12) |
| O4B—Rb1—O2Bviii | 75.04 (3) | C6A—O6A—Rb1vi | 134.92 (12) |
| O6Ai—Rb1—O2Bviii | 60.78 (3) | Rb1v—O6A—Rb1vi | 87.97 (3) |
| O2A—Rb1—O2Bviii | 85.63 (4) | C2B—N1B—C6B | 125.45 (15) |
| O6Aii—Rb1—O2Bviii | 126.81 (3) | C2B—N1B—H1B | 117.6 (15) |
| O2Biii—Rb1—O2Bviii | 155.95 (5) | C6B—N1B—H1B | 116.9 (15) |
| O2Biv—Rb1—O2Bviii | 94.58 (4) | O2B—C2B—N1B | 121.94 (16) |
| O1W—Rb1—C2Biii | 82.13 (4) | O2B—C2B—N3B | 123.22 (16) |
| O4B—Rb1—C2Biii | 63.29 (4) | N1B—C2B—N3B | 114.84 (15) |
| O6Ai—Rb1—C2Biii | 157.33 (4) | O2B—C2B—Rb1iii | 54.65 (10) |
| O2A—Rb1—C2Biii | 72.24 (4) | N1B—C2B—Rb1iii | 110.33 (11) |
| O6Aii—Rb1—C2Biii | 95.40 (4) | N3B—C2B—Rb1iii | 105.84 (11) |
| O2Biii—Rb1—C2Biii | 18.87 (4) | C2B—O2B—Rb1iii | 106.49 (12) |
| O2Biv—Rb1—C2Biii | 110.36 (4) | C2B—O2B—Rb1vii | 133.05 (12) |
| O2Bviii—Rb1—C2Biii | 137.58 (4) | Rb1iii—O2B—Rb1vii | 82.45 (3) |
| O1W—Rb1—Rb1ix | 126.08 (3) | C2B—O2B—Rb1viii | 96.57 (11) |
| O4B—Rb1—Rb1ix | 118.45 (2) | Rb1iii—O2B—Rb1viii | 155.95 (5) |
| O6Ai—Rb1—Rb1ix | 46.58 (3) | Rb1vii—O2B—Rb1viii | 76.76 (3) |
| O2A—Rb1—Rb1ix | 82.29 (3) | C2B—N3B—C4B | 124.81 (15) |
| O6Aii—Rb1—Rb1ix | 88.18 (3) | C2B—N3B—H3B | 111.8 (14) |
| O2Biii—Rb1—Rb1ix | 149.52 (3) | C4B—N3B—H3B | 123.4 (14) |
| O2Biv—Rb1—Rb1ix | 47.14 (3) | O4B—C4B—N3B | 117.65 (15) |
| O2Bviii—Rb1—Rb1ix | 49.18 (2) | O4B—C4B—C5B | 125.34 (16) |
| C2Biii—Rb1—Rb1ix | 151.63 (3) | N3B—C4B—C5B | 117.01 (15) |
| O1W—Rb1—Rb1x | 106.17 (3) | C4B—O4B—Rb1 | 135.81 (11) |
| O4B—Rb1—Rb1x | 125.08 (2) | C6B—C5B—C4B | 120.79 (15) |
| O6Ai—Rb1—Rb1x | 106.63 (3) | C6B—C5B—H5B | 119.6 |
| O2A—Rb1—Rb1x | 81.74 (3) | C4B—C5B—H5B | 119.6 |
| O6Aii—Rb1—Rb1x | 45.45 (3) | O6B—C6B—C5B | 126.67 (16) |
| O2Biii—Rb1—Rb1x | 50.41 (3) | O6B—C6B—N1B | 116.23 (15) |
| O2Biv—Rb1—Rb1x | 54.06 (3) | C5B—C6B—N1B | 117.09 (15) |
| O2Bviii—Rb1—Rb1x | 148.58 (2) | Rb1—O1W—H1W | 117.0 (18) |
| C2Biii—Rb1—Rb1x | 64.29 (3) | Rb1—O1W—H2W | 122.1 (19) |
| Rb1ix—Rb1—Rb1x | 100.428 (8) | H1W—O1W—H2W | 111 (3) |
| C6A—N1A—C2A | 125.34 (15) | ||
| C6A—N1A—C2A—O2A | −176.43 (17) | C6B—N1B—C2B—O2B | 179.49 (17) |
| C6A—N1A—C2A—N3A | 2.6 (3) | C6B—N1B—C2B—N3B | −0.8 (3) |
| O2A—C2A—N3A—C4A | −177.35 (17) | O2B—C2B—N3B—C4B | −179.42 (17) |
| N1A—C2A—N3A—C4A | 3.6 (3) | N1B—C2B—N3B—C4B | 0.8 (2) |
| C2A—N3A—C4A—O4A | 179.49 (17) | C2B—N3B—C4B—O4B | −179.93 (16) |
| C2A—N3A—C4A—C5A | 0.0 (2) | C2B—N3B—C4B—C5B | 0.2 (2) |
| O4A—C4A—C5A—C6A | 171.78 (16) | O4B—C4B—C5B—C6B | 178.77 (16) |
| N3A—C4A—C5A—C6A | −8.7 (2) | N3B—C4B—C5B—C6B | −1.4 (2) |
| C2A—N1A—C6A—O6A | 170.35 (17) | C4B—C5B—C6B—O6B | −177.57 (17) |
| C2A—N1A—C6A—C5A | −11.3 (2) | C4B—C5B—C6B—N1B | 1.4 (2) |
| C4A—C5A—C6A—O6A | −167.85 (17) | C2B—N1B—C6B—O6B | 178.77 (17) |
| C4A—C5A—C6A—N1A | 13.8 (2) | C2B—N1B—C6B—C5B | −0.3 (3) |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+1, y+1/2, −z+1/2; (v) x+1, y, z; (vi) x+1, −y+1/2, z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1, −y, −z+1; (ix) x, −y+1/2, z+1/2; (x) x, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1A—H1A···O6Biv | 0.88 (1) | 1.90 (1) | 2.769 (2) | 172 (2) |
| N3A—H3A···O4B | 0.86 (1) | 1.84 (1) | 2.694 (2) | 175 (2) |
| N1B—H1B···O2Avii | 0.88 (1) | 1.94 (1) | 2.820 (2) | 175 (2) |
| N3B—H3B···O4A | 0.87 (1) | 2.12 (1) | 2.975 (2) | 169 (2) |
| O1W—H1W···O6Bxi | 0.84 (1) | 1.87 (1) | 2.700 (2) | 171 (2) |
| O1W—H2W···O4Aiii | 0.83 (1) | 2.08 (1) | 2.898 (2) | 170 (3) |
Symmetry codes: (iv) −x+1, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (xi) −x, −y, −z; (iii) −x+1, −y, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2087).
References
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Braga, D., Grepioni, F., Maini, L., Prosperi, S., Gobetto, R. & Chierotti, M. R. (2010). Chem. Commun. 46, 7715–7717. [DOI] [PubMed]
- Clegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1492–m1494.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Garcia, H. C., Diniz, R., Yoshida, M. I. & Oliveira, L. F. C. (2010). J. Mol. Struct. 978, 79–85.
- Gryl, M., Krawczuk, A. & Stadnicka, K. (2008). Acta Cryst. B64, 623–632. [DOI] [PubMed]
- Gryl, M., Krawczuk-Pantula, A. & Stadnicka, K. (2011). Acta Cryst. B67, 144–154. [DOI] [PubMed]
- Ivanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470–2474.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Xiong, Y., He, C., An, T.-C., Cha, C.-H., Zhu, X.-H. & Jiang, S. (2003). Transition Met. Chem. 28, 69–73.
- Yıldırım, S. Ö., McKee, V., Khardli, F.-Z., Mimouni, M. & Hadda, T. B. (2008). Acta Cryst. E64, m154–m155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012657/vm2087sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012657/vm2087Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report




