Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):i33. doi: 10.1107/S1600536811014498

Na3DyCl6

Christian M Schurz a, Gerd Meyer b, Thomas Schleid a,*
PMCID: PMC3089349  PMID: 21754259

Abstract

Single crystals of the title compound, tris­odium hexa­chloridodysprosate, Na3DyCl6, were obtained as a by-product of synthesis using dysprosium(III) chloride and sodium chloride among others. The monoclinic structure with its typical β angle close to 90° [90.823 (4)°] is isotypic with the mineral cryolite (Na3AlF6) and the high-temperature structure of the Na3 MCl6 series, with M = Eu–Lu, Y and Sc. The isolated, almost perfect [DyCl6]3− octa­hedra are inter­connected via two crystallographically different Na+ cations: while one Na+ resides on centres of symmetry (as well as Dy3+) and also builds almost perfect, isolated [NaCl6]5− octa­hedra, the other Na+ is surrounded by seven chloride anions forming a distorted [NaCl7]6− trigonal prism with just one cap as close secondary contact.

Related literature

The first structural descriptions of the Na3 MCl6 series (M = Eu–Lu, Y and Sc) on a single crystal in the cryolite-type structure (Hawthorne &, Ferguson, 1975) were given for M = Er by Meyer et al. (1987), for M = Ho by Böcker et al. (2001) and for M = Y by Liao & Dronskowski (2004). For the correlation between the two temperature-dependent phases, see: Meyer (1984); Meyer et al. (1987); Wickleder & Meyer (1995). For a planned synthesis of Dy2NCl3, compare with those for Gd2NCl3 (Schwanitz-Schüller & Simon, 1985) and Y2NCl3 (Meyer et al., 1989).

Experimental

Crystal data

  • Na3DyCl6

  • M r = 444.17

  • Monoclinic, Inline graphic

  • a = 6.8791 (5) Å

  • b = 7.2816 (5) Å

  • c = 10.1734 (7) Å

  • β = 90.823 (4)°

  • V = 509.54 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.96 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Nonius Kappa-CCD diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie 1999) T min = 0.218, T max = 0.414

  • 12026 measured reflections

  • 1245 independent reflections

  • 1124 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.045

  • S = 1.08

  • 1245 reflections

  • 50 parameters

  • Δρmax = 0.84 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014498/hp2006sup1.cif

e-67-00i33-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014498/hp2006Isup2.hkl

e-67-00i33-Isup2.hkl (61.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Na1—Cl2i 2.7358 (8)
Na1—Cl3iii 2.7902 (8)
Na1—Cl1 2.8687 (8)
Na2—Cl1 2.8295 (19)
Na2—Cl2vi 2.8341 (19)
Na2—Cl1iv 2.8492 (19)
Na2—Cl3i 2.8612 (19)
Na2—Cl3vii 3.204 (2)
Na2—Cl2iv 3.325 (2)
Na2—Cl2 3.488 (2)
Dy—Cl2 2.6176 (8)
Dy—Cl3 2.6320 (8)
Dy—Cl1viii 2.6447 (8)

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This work was supported by the German Research Foundation (DFG, Frankfurt/Main) within the funding programme Open Access Publishing and the State of Baden-Württemberg (Stuttgart). The authors thank Dr Sabine Strobel for the data collection.

supplementary crystallographic information

Comment

Trisodiumhexachlorodysprosate(III) belongs to a group of ternary chlorides Na3MCl6 with M = Eu – Lu, Y and Sc (Meyer et al., 1987), which crystallize in the cryolite-type structure (Hawthorne et al., 1975). The Dy3+ and (Na1)+ occupy the 2a and 2b Wyckoff positions at centres of symmetry, whereas the three crystallographically different chloride anions and (Na2)+ reside at the 4e position with the site symmetry 1. A l l cations have six primary contacts to Cl-, but the [(Na2)Cl6]5- polyhedron can not only be described as distorted trigonal prism instead of the usual octahedra that are realised for [DyCl6]3- and [(Na1)Cl6]5-, it moreover carries a seventh capping Cl- anion. The isolated [DyCl6]3- octahedra are interconnected to a three-dimensional texture via sodium cations (Fig. 1). This structure represents the high-temperature phase of the Na3MCl6 series with M = Eu – Lu, Y and Sc. The transition into the low-temperature phase with its trigonal structure (Meyer, 1984) depends on the radius of the actual lanthanoid(III) cation (Wickleder et al., 1995) and is estimated for M = Dy at around 290 K, hence not far below the temperature of the measurement.

Experimental

Colourless and transparent single crystals of Na3DyCl6 were obtained as by-product from the reaction of sodium azide (NaN3), dysprosium metal (Dy) and its the corresponding trichloride (DyCl3) in presence of sodium chloride (NaCl) as flux, originally designed to produce Dy2NCl3 in analogy to Gd2NCl3 (Schwanitz-Schüller et al., 1985) and Y2NCl3 (Meyer et al., 1989) instead. The reaction mixture was placed into a torch- sealed evacuated fused-silica vessel, which was heated at 1143 K for seven days, followed by cooling to room temperature within one day.

Figures

Fig. 1.

Fig. 1.

Crystal structure of cryolite-type Na3DyCl6. Displacement ellipsoids are drawn at 90% probability level.

Crystal data

Na3DyCl6 F(000) = 402
Mr = 444.17 Dx = 2.895 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -p2yn Cell parameters from 8457 reflections
a = 6.8791 (5) Å θ = 3.4–28.1°
b = 7.2816 (5) Å µ = 8.96 mm1
c = 10.1734 (7) Å T = 293 K
β = 90.823 (4)° Block, colourless
V = 509.54 (6) Å3 0.20 × 0.15 × 0.10 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 1245 independent reflections
Radiation source: fine-focus sealed tube 1124 reflections with I > 2σ(I)
graphite Rint = 0.071
charge cpouled device scans θmax = 28.1°, θmin = 3.4°
Absorption correction: numerical (X-SHAPE; Stoe & Cie 1999) h = −9→9
Tmin = 0.218, Tmax = 0.414 k = −9→9
12026 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0199P)2 + 0.2881P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.84 e Å3
1245 reflections Δρmin = −1.05 e Å3
50 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0043 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.0000 0.0000 0.5000 0.0291 (4)
Na2 0.5218 (2) −0.0749 (2) 0.24225 (18) 0.0499 (4)
Dy 0.0000 0.0000 0.0000 0.01593 (9)
Cl1 0.13816 (12) 0.06522 (12) 0.23941 (8) 0.02834 (18)
Cl2 −0.31489 (12) 0.17894 (12) 0.06382 (9) 0.0358 (2)
Cl3 0.16836 (13) 0.30521 (11) −0.07742 (9) 0.0358 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0323 (11) 0.0244 (10) 0.0303 (10) −0.0038 (7) −0.0033 (9) 0.0027 (7)
Na2 0.0462 (9) 0.0341 (9) 0.0694 (12) −0.0069 (7) 0.0029 (8) 0.0033 (8)
Dy 0.01762 (12) 0.01512 (12) 0.01509 (12) −0.00060 (6) 0.00126 (7) −0.00138 (6)
Cl1 0.0334 (4) 0.0333 (4) 0.0182 (3) 0.0032 (3) −0.0037 (3) −0.0035 (3)
Cl2 0.0322 (4) 0.0323 (4) 0.0431 (5) 0.0149 (3) 0.0120 (4) 0.0090 (4)
Cl3 0.0350 (4) 0.0271 (4) 0.0450 (5) −0.0123 (3) −0.0069 (4) 0.0122 (4)

Geometric parameters (Å, °)

Na1—Cl2i 2.7358 (8) Na2—Dyiv 4.0608 (17)
Na1—Cl2ii 2.7358 (8) Na2—Na1x 4.2126 (17)
Na1—Cl3iii 2.7902 (8) Dy—Cl2 2.6176 (8)
Na1—Cl3iv 2.7902 (8) Dy—Cl2xii 2.6176 (8)
Na1—Cl1 2.8687 (8) Dy—Cl3 2.6320 (8)
Na1—Cl1v 2.8687 (8) Dy—Cl3xii 2.6320 (8)
Na1—Na2vi 3.9579 (18) Dy—Cl1xii 2.6447 (8)
Na1—Na2vii 3.9580 (18) Dy—Cl1 2.6447 (8)
Na1—Na2viii 4.2126 (17) Dy—Na2xiii 4.0608 (17)
Na1—Na2ix 4.2126 (17) Dy—Na2vi 4.0608 (17)
Na2—Cl1 2.8295 (19) Cl1—Na2vi 2.8492 (19)
Na2—Cl2x 2.8341 (19) Cl2—Na1xiv 2.7358 (8)
Na2—Cl1iv 2.8492 (19) Cl2—Na2viii 2.8342 (19)
Na2—Cl3i 2.8612 (19) Cl2—Na2vi 3.325 (2)
Na2—Cl3xi 3.204 (2) Cl2—Na2 3.488 (2)
Na2—Cl2iv 3.325 (2) Cl3—Na1vi 2.7902 (8)
Na2—Cl2 3.488 (2) Cl3—Na2xv 2.8611 (19)
Na2—Na1iv 3.9580 (18) Cl3—Na2xi 3.204 (2)
Cl2i—Na1—Cl2ii 180.0 Cl3xi—Na2—Na1iv 44.32 (3)
Cl2i—Na1—Cl3iii 90.49 (3) Cl2iv—Na2—Na1iv 88.01 (4)
Cl2ii—Na1—Cl3iii 89.51 (3) Cl1—Na2—Dyiv 103.79 (5)
Cl2i—Na1—Cl3iv 89.51 (3) Cl2x—Na2—Dyiv 158.34 (6)
Cl2ii—Na1—Cl3iv 90.49 (3) Cl1iv—Na2—Dyiv 40.43 (3)
Cl3iii—Na1—Cl3iv 180.0 Cl3i—Na2—Dyiv 97.19 (5)
Cl2i—Na1—Cl1 85.33 (3) Cl3xi—Na2—Dyiv 88.29 (4)
Cl2ii—Na1—Cl1 94.67 (3) Cl2iv—Na2—Dyiv 39.98 (2)
Cl3iii—Na1—Cl1 86.30 (3) Na1iv—Na2—Dyiv 78.73 (3)
Cl3iv—Na1—Cl1 93.71 (3) Cl1—Na2—Na1x 132.81 (6)
Cl2i—Na1—Cl1v 94.67 (3) Cl2x—Na2—Na1x 90.06 (4)
Cl2ii—Na1—Cl1v 85.33 (3) Cl1iv—Na2—Na1x 112.16 (5)
Cl3iii—Na1—Cl1v 93.71 (3) Cl3i—Na2—Na1x 41.17 (3)
Cl3iv—Na1—Cl1v 86.29 (3) Cl3xi—Na2—Na1x 82.78 (4)
Cl1—Na1—Cl1v 180.00 (3) Cl2iv—Na2—Na1x 40.45 (2)
Cl2i—Na1—Na2vi 59.53 (3) Na1iv—Na2—Na1x 120.74 (4)
Cl2ii—Na1—Na2vi 120.47 (3) Dyiv—Na2—Na1x 74.49 (3)
Cl3iii—Na1—Na2vi 53.35 (3) Cl2—Dy—Cl2xii 180.0
Cl3iv—Na1—Na2vi 126.65 (3) Cl2—Dy—Cl3 91.33 (3)
Cl1—Na1—Na2vi 45.99 (3) Cl2xii—Dy—Cl3 88.67 (3)
Cl1v—Na1—Na2vi 134.01 (3) Cl2—Dy—Cl3xii 88.67 (3)
Cl2i—Na1—Na2vii 120.47 (3) Cl2xii—Dy—Cl3xii 91.33 (3)
Cl2ii—Na1—Na2vii 59.53 (3) Cl3—Dy—Cl3xii 180.0
Cl3iii—Na1—Na2vii 126.65 (3) Cl2—Dy—Cl1xii 91.73 (3)
Cl3iv—Na1—Na2vii 53.35 (3) Cl2xii—Dy—Cl1xii 88.27 (3)
Cl1—Na1—Na2vii 134.01 (3) Cl3—Dy—Cl1xii 91.71 (3)
Cl1v—Na1—Na2vii 45.99 (3) Cl3xii—Dy—Cl1xii 88.29 (3)
Na2vi—Na1—Na2vii 180.0 Cl2—Dy—Cl1 88.28 (3)
Cl2i—Na1—Na2viii 127.96 (3) Cl2xii—Dy—Cl1 91.72 (3)
Cl2ii—Na1—Na2viii 52.04 (3) Cl3—Dy—Cl1 88.29 (3)
Cl3iii—Na1—Na2viii 42.45 (3) Cl3xii—Dy—Cl1 91.71 (3)
Cl3iv—Na1—Na2viii 137.55 (3) Cl1xii—Dy—Cl1 180.00 (3)
Cl1—Na1—Na2viii 73.28 (3) Cl2—Dy—Na2xiii 125.31 (3)
Cl1v—Na1—Na2viii 106.72 (3) Cl2xii—Dy—Na2xiii 54.69 (3)
Na2vi—Na1—Na2viii 72.02 (3) Cl3—Dy—Na2xiii 115.46 (3)
Na2vii—Na1—Na2viii 107.98 (3) Cl3xii—Dy—Na2xiii 64.54 (3)
Cl2i—Na1—Na2ix 52.04 (3) Cl1xii—Dy—Na2xiii 44.32 (3)
Cl2ii—Na1—Na2ix 127.96 (3) Cl1—Dy—Na2xiii 135.68 (3)
Cl3iii—Na1—Na2ix 137.55 (3) Cl2—Dy—Na2vi 54.69 (3)
Cl3iv—Na1—Na2ix 42.45 (3) Cl2xii—Dy—Na2vi 125.31 (3)
Cl1—Na1—Na2ix 106.72 (3) Cl3—Dy—Na2vi 64.54 (3)
Cl1v—Na1—Na2ix 73.28 (3) Cl3xii—Dy—Na2vi 115.46 (3)
Na2vi—Na1—Na2ix 107.98 (3) Cl1xii—Dy—Na2vi 135.68 (3)
Na2vii—Na1—Na2ix 72.02 (3) Cl1—Dy—Na2vi 44.32 (3)
Na2viii—Na1—Na2ix 180.0 Na2xiii—Dy—Na2vi 180.0
Cl1—Na2—Cl2x 97.84 (6) Dy—Cl1—Na2 105.51 (5)
Cl1—Na2—Cl1iv 88.35 (5) Dy—Cl1—Na2vi 95.24 (4)
Cl2x—Na2—Cl1iv 143.02 (7) Na2—Cl1—Na2vi 133.80 (6)
Cl1—Na2—Cl3i 94.53 (6) Dy—Cl1—Na1 134.58 (3)
Cl2x—Na2—Cl3i 79.84 (5) Na2—Cl1—Na1 104.61 (4)
Cl1iv—Na2—Cl3i 136.23 (7) Na2vi—Cl1—Na1 87.61 (4)
Cl1—Na2—Cl3xi 144.16 (7) Dy—Cl2—Na1xiv 138.63 (3)
Cl2x—Na2—Cl3xi 74.54 (5) Dy—Cl2—Na2viii 99.86 (4)
Cl1iv—Na2—Cl3xi 79.25 (5) Na1xiv—Cl2—Na2viii 121.47 (5)
Cl3i—Na2—Cl3xi 117.64 (5) Dy—Cl2—Na2vi 85.33 (4)
Cl1—Na2—Cl2iv 139.29 (7) Na1xiv—Cl2—Na2vi 87.50 (4)
Cl2x—Na2—Cl2iv 119.28 (5) Na2viii—Cl2—Na2vi 102.36 (4)
Cl1iv—Na2—Cl2iv 72.36 (4) Dy—Cl3—Na1vi 134.93 (3)
Cl3i—Na2—Cl2iv 77.55 (4) Dy—Cl3—Na2xv 128.25 (5)
Cl3xi—Na2—Cl2iv 68.06 (4) Na1vi—Cl3—Na2xv 96.38 (4)
Cl1—Na2—Na1iv 104.40 (5) Dy—Cl3—Na2xi 90.78 (4)
Cl2x—Na2—Na1iv 97.07 (5) Na1vi—Cl3—Na2xi 82.33 (4)
Cl1iv—Na2—Na1iv 46.40 (3) Na2xv—Cl3—Na2xi 104.74 (4)
Cl3i—Na2—Na1iv 161.07 (6)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x−1/2, y−1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x, −y, −z+1; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x−1/2, −y−1/2, z+1/2; (viii) x−1, y, z; (ix) −x+1, −y, −z+1; (x) x+1, y, z; (xi) −x+1, −y, −z; (xii) −x, −y, −z; (xiii) x−1/2, −y−1/2, z−1/2; (xiv) −x−1/2, y+1/2, −z+1/2; (xv) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2006).

References

  1. Böcker, M., Gerlitzki, N. & Meyer, G. (2001). Z. Kristallogr. New Cryst. Struct. 216, 19.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Hawthorne, F. C. & Ferguson, R. B. (1975). Can. Mineral. 13, 377–382.
  4. Liao, W. & Dronskowski, R. (2004). Acta Cryst. E60, i72–i73. [DOI] [PubMed]
  5. Meyer, G. (1984). Z. Anorg. Allg. Chem. 517, 191–197.
  6. Meyer, G., Ax, P., Schleid, Th. & Irmler, M. (1987). Z. Anorg. Allg. Chem. 554, 25–33.
  7. Meyer, H.-J., Jones, N. L. & Corbett, J. D. (1989). Inorg. Chem. 28, 2635–2637.
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Schwanitz-Schüller, U. & Simon, A. (1985). Z. Naturforsch. Teil B, 40, 279–283.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Stoe & Cie (1999). X-SHAPE Stoe & Cie, Darmstadt, Germany.
  13. Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 457–463.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014498/hp2006sup1.cif

e-67-00i33-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014498/hp2006Isup2.hkl

e-67-00i33-Isup2.hkl (61.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES