Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):m593–m594. doi: 10.1107/S1600536811011196

Triethyl­ammonium bis­{2-[(2-oxido-5-nitro­benzylidene)amino]­benzoato}ferrate(III) monohydrate

Eduard N Chygorin a,*, Svetlana R Petrusenko a, Volodymyr N Kokozay a, Yuri O Smal a, Volodymyr V Bon b
PMCID: PMC3089355  PMID: 21754314

Abstract

In the title compound, [NH(C2H5)3][Fe(C14H8N2O5)2]·H2O, the iron(III) ion is hexa­coordinated by four O atoms in the basal plane [Fe—O distances in the range 1.904 (4)–1.909 (4) Å] and two N atoms in the axial plane [Fe—N = 1.981 (4) and 1.985 (4) Å] of two tridentate fully deprotonated 2-{[(2-oxido-5-nitro­phen­yl)methyl­ene]amino}­benzoato (H2 L) ligands, forming a tetra­gonally elongated octa­hedral geometry. The triethyl­ammonium cations and complex anions are linked by N—H⋯O hydrogen bonds into chains parallel to [100]. Disordered water mol­ecules (occupancy ratio 0.6:0.4) occupy the voids in the crystal structure.

Related literature

For the stuctures of related compexes, including those with phenyl-salicyliden-imine (PSI) ligands similar to H2 L, see: Rotondo et al. (2009); Patel (2009); Patel et al. (2008); Laye & Sanudo (2009); Lu et al. (2006); Rosair et al. (2002). For bond-valence sums, see: Brown & Altermatt (1985).graphic file with name e-67-0m593-scheme1.jpg

Experimental

Crystal data

  • (C6H16N)[Fe(C14H8N2O5)2]·H2O

  • M r = 742.50

  • Monoclinic, Inline graphic

  • a = 10.2688 (3) Å

  • b = 14.7128 (4) Å

  • c = 25.0800 (7) Å

  • β = 97.230 (2)°

  • V = 3759.03 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.35 × 0.05 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.855, T max = 0.982

  • 20469 measured reflections

  • 6432 independent reflections

  • 5305 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.242

  • S = 1.13

  • 6432 reflections

  • 466 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011196/zk2002sup1.cif

e-67-0m593-sup1.cif (30.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011196/zk2002Isup2.hkl

e-67-0m593-Isup2.hkl (314.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O7 0.91 2.00 2.865 (13) 159

supplementary crystallographic information

Comment

There is growing interest in transition metal complexes with phenyl-salicyliden-imines (PSI) ligands due to their important applications and pharmacological activities (Rotondo et al., 2009, Patel, 2009, Patel et al., 2008, Laye & Sanudo, 2009). Here we represent a new complex with nitro-substituted PSI ligand, 2-(((2-hydroxy-5-nitrophenyl)methylene)amino)benzoic acid (H2L), wich was obtained as by-product during the invistigation of the system Co – FeCl2.4H2O – MnCl2.4H2O – H2L – Et3N – DMF.

The synthesis of {NH(C2H5)3}[Fe(C14H8NO5)2].H2O, I, is carried out in air that leads to stabilization of iron(III) ion. The formation of the complex can be understood if one considers the following reaction scheme: FeCl2.4H2O + 2H2L + 3Et3N + 0.25O2→ (NHEt3)[FeIIIL2] + 2Et3N.HCl + 9H2O

The crystal structure of I consists of triethylammonium cations and complex anions (Fig. 1) linked together by "strong" N—H···O hydrogen bonds (Fig. 2). The Fe centre is hexacoordinated in an axially elongated octahedral fashion (FeO4N2-chromophore) with oxidation state Fe(III), as it can be seen from close examination of the structured parameters and bond-valence sum calculations (Brown & Altermatt, 1985). Angular deviations from octahedral geometry are not significant, less than 5° for cis- and trans-angles.

In the crystal packing of I there are channels along the a axis (Fig. 3), accounting in total 610.7 Å3 per unit cell, i.e. some 16.2% of the total volume. The voids were examined using PLATON (Spek, 2009). The channels are occupied by disordered water molecules.

Experimental

2-aminobenzoic acid (0.51 g, 3.75 mmol), 5-Nitrosalicylaldehyde (0.63 g, 3.75 mmol), and triethylamine (0.53 ml, 3.75 mmol) were dissolved in DMF (25 ml) in this order, forming a yellow solution and magnetically stirred at 50 – 60°C (10 min). Then, cobalt powder (0.08 g, 1.25 mmol), FeCl2.4H2O (0.25 g, 1.25 mmol) and MnCl2.4H2O (0.26 g, 1.25 mmol) were successfully added to the hot yellow solution with stirring about 2 h. Red crystals suitable for X-ray analysis were isolated by adding of iPrOH from the dark red solution after 1 day. Yield: 0.34 g, 0.32% (per Fe). Elemental analysis for C34H34Fe1N5O11 (Mr=744.52). Calcd: C, 54.85; N, 9.41; H, 4.6; Fe, 7.5. Found: C, 54.5; N, 9.6; H, 4.6; Fe, 7.2. The compound is sparingly soluble in DMSO and DMF, and it is stable in air. The infrared spectrum of solid recorded using KBr disk shows an adsorption at 3440 cm-1, which attributed to ν(OH) of H2O solvation molecules. The presence in IR spectrum of a band at 1680 cm-1 attributable to the ν(C=N)imine stretching frequency together with the absence of the band due to the ν(C=O) of the carbonyl indicates the formation of the Schiff base (Fig. 4).

Refinement

Structure solution by direct methods in the space group P21/c, followed by refinement, based on F2, of atomic coordinates and anisotropic displacement parameters, was performed using the programs SHELX97 (Sheldrick, 2008) successively. H atoms bonded to C atoms were found in successive difference Fourier maps and refined using a riding model, with C–H = 0.93 Å and with Uiso(H)=1.2Ueq(C). O11 appeared to be highly disordered and was split in two positions with 0.4 and 0.6 occurrence. The H-atoms bonded to disordered oxygen O11 cannot be located from difference map. On this ground, both positions of O11 are refined without H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of [Fe(C14H8NO5)2]- with atom labels and 50% probability displacement elipsoides. The H atoms have been omitted.

Fig. 2.

Fig. 2.

The packing of complex I, viewed down the b axis, showing N–H···O hydrogen bonds linking in pairs of the complex cations and anions. H atoms not involved in hydrogen bonding have been omitted.

Fig. 3.

Fig. 3.

The packing of complex I, viewed down the a axis, demonstrating the voids occupied by water molecules.

Fig. 4.

Fig. 4.

The IR spectrum of complex I (cm-1): 3440, 3065, 2989, 2928, 2861, 2793, 1678, 1592, 1550, 1508, 1457, 1371,1321, 1184, 1107, 955, 895, 862, 836, 801, 750, 715.

Crystal data

(C6H16N)[Fe(C14H8N2O5)2]·H2O F(000) = 1540
Mr = 742.50 Dx = 1.312 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5575 reflections
a = 10.2688 (3) Å θ = 5.8–25.0°
b = 14.7128 (4) Å µ = 0.46 mm1
c = 25.0800 (7) Å T = 296 K
β = 97.230 (2)° Prism, red
V = 3759.03 (18) Å3 0.35 × 0.05 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 6432 independent reflections
Radiation source: fine-focus sealed tube 5305 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 25.1°, θmin = 5.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→12
Tmin = 0.855, Tmax = 0.982 k = −17→17
20469 measured reflections l = −29→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.242 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1031P)2 + 8.9019P] where P = (Fo2 + 2Fc2)/3
6432 reflections (Δ/σ)max < 0.001
466 parameters Δρmax = 0.89 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.76042 (6) 0.43361 (4) 0.27782 (3) 0.0393 (3)
N1 0.6821 (4) 0.5564 (3) 0.28195 (17) 0.0488 (10)
N2 0.6448 (5) 0.5933 (6) 0.5208 (2) 0.0771 (16)
N3 0.8339 (4) 0.3095 (3) 0.27462 (17) 0.0495 (10)
N4 1.0827 (7) 0.2486 (7) 0.5039 (3) 0.103 (2)
N5 0.2528 (12) 0.4148 (8) 0.1890 (4) 0.139 (3)
H5A 0.3355 0.3918 0.1905 0.167*
O1 0.8649 (4) 0.4740 (3) 0.22465 (16) 0.0605 (10)
O2 0.9514 (5) 0.5716 (3) 0.1731 (2) 0.0854 (14)
O3 0.6678 (3) 0.3946 (2) 0.33491 (14) 0.0506 (8)
O4 0.6579 (5) 0.5525 (5) 0.5635 (2) 0.0986 (18)
O5 0.6314 (6) 0.6749 (5) 0.5180 (2) 0.1001 (18)
O6 0.6131 (4) 0.4005 (3) 0.22741 (16) 0.0605 (10)
O7 0.4835 (4) 0.3151 (4) 0.1717 (2) 0.0804 (13)
O8 0.9015 (4) 0.4666 (3) 0.33112 (15) 0.0556 (9)
O9 1.0951 (9) 0.1671 (6) 0.4971 (3) 0.137 (3)
O10 1.1067 (8) 0.2867 (5) 0.5476 (2) 0.132 (3)
O11A 0.741 (3) 0.1967 (14) 0.4845 (9) 0.160 (4) 0.40
O11B 0.6751 (18) 0.1050 (10) 0.5340 (6) 0.160 (4) 0.60
C1 0.8614 (6) 0.5491 (4) 0.1981 (2) 0.0588 (14)
C2 0.7424 (6) 0.6079 (4) 0.1954 (2) 0.0593 (14)
C3 0.6571 (6) 0.6104 (4) 0.2343 (2) 0.0556 (13)
C4 0.6518 (5) 0.5896 (4) 0.3267 (2) 0.0509 (12)
H4A 0.6265 0.6503 0.3269 0.061*
C5 0.6544 (5) 0.5397 (4) 0.3761 (2) 0.0487 (11)
C6 0.6607 (5) 0.4436 (4) 0.3777 (2) 0.0482 (11)
C7 0.6597 (5) 0.3994 (5) 0.4274 (2) 0.0597 (14)
H7A 0.6607 0.3362 0.4289 0.072*
C8 0.6571 (6) 0.4482 (5) 0.4737 (2) 0.0673 (16)
H8A 0.6607 0.4185 0.5066 0.081*
C9 0.6491 (5) 0.5417 (5) 0.4714 (2) 0.0625 (15)
C10 0.6460 (5) 0.5879 (4) 0.4237 (2) 0.0581 (14)
H10A 0.6384 0.6509 0.4230 0.070*
C11 0.5449 (8) 0.6639 (4) 0.2276 (3) 0.0780 (19)
H11A 0.4867 0.6636 0.2532 0.094*
C12 0.5208 (10) 0.7188 (5) 0.1812 (3) 0.096 (3)
H12A 0.4460 0.7551 0.1763 0.115*
C13 0.6048 (10) 0.7192 (5) 0.1442 (4) 0.099 (3)
H13A 0.5885 0.7563 0.1140 0.118*
C14 0.7160 (8) 0.6643 (5) 0.1507 (3) 0.0787 (19)
H14A 0.7735 0.6652 0.1249 0.094*
C15 0.5931 (5) 0.3311 (4) 0.1968 (2) 0.0573 (13)
C16 0.7025 (6) 0.2670 (4) 0.1898 (2) 0.0597 (14)
C17 0.8148 (6) 0.2571 (4) 0.2260 (2) 0.0554 (13)
C18 0.8964 (5) 0.2712 (4) 0.3170 (2) 0.0531 (12)
H18A 0.9137 0.2093 0.3152 0.064*
C19 0.9408 (5) 0.3170 (4) 0.3664 (2) 0.0533 (13)
C20 0.9450 (5) 0.4139 (4) 0.3703 (2) 0.0510 (12)
C21 0.9988 (6) 0.4511 (5) 0.4194 (2) 0.0635 (15)
H21A 1.0056 0.5140 0.4226 0.076*
C22 1.0412 (6) 0.3991 (5) 0.4623 (3) 0.0700 (17)
H22A 1.0744 0.4259 0.4948 0.084*
C23 1.0348 (6) 0.3054 (6) 0.4577 (2) 0.0738 (18)
C24 0.9887 (6) 0.2630 (5) 0.4103 (2) 0.0641 (15)
H24A 0.9892 0.2000 0.4075 0.077*
C25 0.9163 (7) 0.1966 (5) 0.2154 (3) 0.0730 (18)
H25A 0.9941 0.1926 0.2386 0.088*
C26 0.8961 (10) 0.1443 (6) 0.1697 (3) 0.104 (3)
H26A 0.9595 0.1022 0.1628 0.125*
C27 0.7844 (10) 0.1530 (6) 0.1342 (3) 0.107 (3)
H27A 0.7737 0.1179 0.1031 0.129*
C28 0.6886 (8) 0.2124 (5) 0.1438 (3) 0.086 (2)
H28A 0.6128 0.2168 0.1194 0.104*
C29 0.2660 (14) 0.5053 (12) 0.1683 (9) 0.165 (6)
H29A 0.1813 0.5351 0.1667 0.198*
H29B 0.3266 0.5386 0.1939 0.198*
C30 0.309 (3) 0.5136 (18) 0.1172 (11) 0.274 (13)
H30A 0.2453 0.5464 0.0935 0.411*
H30B 0.3211 0.4542 0.1027 0.411*
H30C 0.3914 0.5458 0.1207 0.411*
C31 0.1695 (12) 0.3468 (13) 0.1528 (6) 0.172 (7)
H31A 0.2154 0.3332 0.1222 0.206*
H31B 0.1642 0.2907 0.1728 0.206*
C32 0.0405 (15) 0.3743 (10) 0.1332 (6) 0.161 (5)
H32A 0.0069 0.3363 0.1035 0.241*
H32B 0.0415 0.4364 0.1216 0.241*
H32C −0.0145 0.3688 0.1613 0.241*
C33 0.2234 (16) 0.4065 (15) 0.2459 (7) 0.192 (7)
H33A 0.1400 0.4359 0.2488 0.230*
H33B 0.2136 0.3426 0.2541 0.230*
C34 0.323 (2) 0.4457 (12) 0.2862 (7) 0.204 (8)
H34A 0.3114 0.4224 0.3211 0.306*
H34B 0.3136 0.5107 0.2862 0.306*
H34C 0.4086 0.4299 0.2778 0.306*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0418 (4) 0.0346 (4) 0.0414 (4) 0.0049 (3) 0.0053 (3) −0.0007 (3)
N1 0.058 (2) 0.044 (2) 0.045 (2) −0.0014 (19) 0.0095 (19) −0.0020 (18)
N2 0.061 (3) 0.117 (5) 0.053 (3) −0.003 (3) 0.008 (2) −0.019 (3)
N3 0.053 (2) 0.051 (2) 0.043 (2) 0.0046 (19) −0.0002 (18) −0.0003 (18)
N4 0.104 (5) 0.128 (6) 0.070 (5) −0.019 (5) −0.013 (4) 0.038 (4)
N5 0.156 (9) 0.152 (9) 0.113 (7) −0.003 (7) 0.033 (6) −0.005 (6)
O1 0.056 (2) 0.073 (3) 0.054 (2) 0.0044 (19) 0.0148 (17) −0.001 (2)
O2 0.084 (3) 0.093 (3) 0.086 (3) −0.025 (3) 0.038 (3) −0.003 (3)
O3 0.054 (2) 0.0494 (19) 0.049 (2) −0.0039 (16) 0.0104 (15) −0.0029 (16)
O4 0.084 (3) 0.165 (6) 0.047 (3) 0.004 (3) 0.009 (2) −0.011 (3)
O5 0.124 (5) 0.112 (5) 0.068 (3) 0.006 (4) 0.026 (3) −0.032 (3)
O6 0.055 (2) 0.067 (2) 0.058 (2) 0.0076 (18) −0.0025 (17) 0.0048 (19)
O7 0.059 (2) 0.099 (3) 0.077 (3) −0.004 (2) −0.014 (2) −0.010 (3)
O8 0.057 (2) 0.055 (2) 0.053 (2) −0.0113 (17) 0.0005 (17) 0.0015 (17)
O9 0.182 (7) 0.120 (6) 0.098 (5) 0.012 (5) −0.034 (5) 0.046 (4)
O10 0.166 (6) 0.170 (6) 0.049 (3) −0.052 (5) −0.028 (3) 0.030 (3)
O11A 0.213 (13) 0.127 (8) 0.131 (9) 0.005 (8) −0.009 (8) −0.001 (7)
O11B 0.213 (13) 0.127 (8) 0.131 (9) 0.005 (8) −0.009 (8) −0.001 (7)
C1 0.064 (3) 0.065 (3) 0.050 (3) −0.015 (3) 0.014 (3) −0.010 (3)
C2 0.075 (4) 0.052 (3) 0.051 (3) −0.007 (3) 0.010 (3) 0.001 (2)
C3 0.074 (4) 0.043 (3) 0.051 (3) 0.004 (3) 0.009 (3) 0.000 (2)
C4 0.058 (3) 0.044 (3) 0.052 (3) 0.003 (2) 0.011 (2) −0.005 (2)
C5 0.046 (3) 0.056 (3) 0.046 (3) 0.001 (2) 0.012 (2) −0.006 (2)
C6 0.041 (2) 0.058 (3) 0.047 (3) −0.002 (2) 0.008 (2) −0.001 (2)
C7 0.056 (3) 0.070 (3) 0.055 (3) 0.002 (3) 0.015 (2) 0.010 (3)
C8 0.059 (3) 0.093 (5) 0.050 (3) 0.004 (3) 0.010 (3) 0.010 (3)
C9 0.050 (3) 0.096 (5) 0.043 (3) 0.000 (3) 0.009 (2) −0.010 (3)
C10 0.048 (3) 0.069 (3) 0.058 (3) 0.003 (3) 0.010 (2) −0.011 (3)
C11 0.106 (5) 0.064 (4) 0.064 (4) 0.027 (4) 0.014 (4) 0.007 (3)
C12 0.135 (7) 0.074 (5) 0.081 (5) 0.042 (5) 0.020 (5) 0.021 (4)
C13 0.146 (8) 0.071 (5) 0.079 (5) 0.023 (5) 0.018 (5) 0.024 (4)
C14 0.109 (5) 0.069 (4) 0.061 (4) −0.002 (4) 0.023 (4) 0.008 (3)
C15 0.054 (3) 0.069 (4) 0.048 (3) −0.001 (3) 0.003 (2) 0.007 (3)
C16 0.071 (3) 0.061 (3) 0.045 (3) 0.001 (3) −0.004 (3) −0.001 (2)
C17 0.066 (3) 0.052 (3) 0.048 (3) 0.008 (3) 0.007 (2) −0.002 (2)
C18 0.058 (3) 0.049 (3) 0.051 (3) 0.008 (2) 0.001 (2) 0.001 (2)
C19 0.044 (3) 0.068 (3) 0.046 (3) 0.003 (2) −0.002 (2) 0.002 (2)
C20 0.043 (3) 0.061 (3) 0.048 (3) −0.007 (2) 0.001 (2) 0.002 (2)
C21 0.056 (3) 0.080 (4) 0.054 (3) −0.011 (3) 0.003 (3) −0.004 (3)
C22 0.065 (4) 0.092 (5) 0.052 (3) −0.014 (3) 0.000 (3) −0.004 (3)
C23 0.062 (4) 0.107 (5) 0.048 (3) −0.008 (4) −0.009 (3) 0.018 (3)
C24 0.057 (3) 0.076 (4) 0.058 (4) 0.006 (3) −0.001 (3) 0.015 (3)
C25 0.082 (4) 0.075 (4) 0.061 (4) 0.030 (3) 0.006 (3) −0.007 (3)
C26 0.141 (7) 0.093 (5) 0.073 (5) 0.051 (5) −0.009 (5) −0.026 (4)
C27 0.138 (7) 0.108 (6) 0.071 (5) 0.030 (6) −0.007 (5) −0.039 (5)
C28 0.097 (5) 0.091 (5) 0.065 (4) 0.013 (4) −0.015 (4) −0.019 (4)
C29 0.124 (9) 0.159 (13) 0.211 (19) 0.009 (9) 0.013 (10) 0.006 (12)
C30 0.38 (4) 0.26 (3) 0.19 (2) −0.02 (2) 0.07 (2) 0.070 (18)
C31 0.092 (7) 0.285 (19) 0.132 (10) −0.001 (10) −0.013 (7) −0.075 (11)
C32 0.165 (13) 0.163 (12) 0.159 (12) −0.012 (10) 0.041 (10) −0.060 (10)
C33 0.151 (12) 0.29 (2) 0.133 (12) 0.040 (13) 0.010 (9) −0.069 (13)
C34 0.26 (2) 0.205 (16) 0.126 (11) 0.014 (14) −0.043 (13) −0.039 (11)

Geometric parameters (Å, °)

Fe1—O3 1.904 (4) C12—H12A 0.9300
Fe1—O8 1.906 (4) C13—C14 1.391 (11)
Fe1—O1 1.908 (4) C13—H13A 0.9300
Fe1—O6 1.909 (4) C14—H14A 0.9300
Fe1—N3 1.981 (4) C15—C16 1.493 (8)
Fe1—N1 1.985 (4) C16—C17 1.382 (8)
N1—C4 1.299 (7) C16—C28 1.399 (9)
N1—C3 1.431 (7) C17—C25 1.420 (8)
N2—O5 1.209 (8) C18—C19 1.432 (8)
N2—O4 1.219 (8) C18—H18A 0.9300
N2—C9 1.460 (8) C19—C24 1.396 (8)
N3—C18 1.300 (7) C19—C20 1.429 (8)
N3—C17 1.436 (7) C20—C21 1.397 (8)
N4—O9 1.220 (10) C21—C22 1.348 (9)
N4—O10 1.230 (10) C21—H21A 0.9300
N4—C23 1.462 (9) C22—C23 1.385 (10)
N5—C29 1.443 (18) C22—H22A 0.9300
N5—C33 1.50 (2) C23—C24 1.373 (9)
N5—C31 1.537 (16) C24—H24A 0.9300
N5—H5A 0.9100 C25—C26 1.375 (10)
O1—C1 1.289 (7) C25—H25A 0.9300
O2—C1 1.225 (7) C26—C27 1.367 (12)
O3—C6 1.301 (6) C26—H26A 0.9300
O6—C15 1.280 (7) C27—C28 1.359 (11)
O7—C15 1.241 (7) C27—H27A 0.9300
O8—C20 1.288 (6) C28—H28A 0.9300
C1—C2 1.492 (9) C29—C30 1.41 (3)
C2—C3 1.392 (8) C29—H29A 0.9700
C2—C14 1.394 (9) C29—H29B 0.9700
C3—C11 1.387 (9) C30—H30A 0.9600
C4—C5 1.436 (8) C30—H30B 0.9600
C4—H4A 0.9300 C30—H30C 0.9600
C5—C10 1.400 (8) C31—C32 1.413 (17)
C5—C6 1.417 (7) C31—H31A 0.9700
C6—C7 1.409 (8) C31—H31B 0.9700
C7—C8 1.368 (9) C32—H32A 0.9600
C7—H7A 0.9300 C32—H32B 0.9600
C8—C9 1.379 (10) C32—H32C 0.9600
C8—H8A 0.9300 C33—C34 1.46 (2)
C9—C10 1.373 (9) C33—H33A 0.9700
C10—H10A 0.9300 C33—H33B 0.9700
C11—C12 1.412 (10) C34—H34A 0.9600
C11—H11A 0.9300 C34—H34B 0.9600
C12—C13 1.346 (12) C34—H34C 0.9600
O3—Fe1—O8 87.53 (16) O7—C15—O6 121.5 (6)
O3—Fe1—O1 175.55 (16) O7—C15—C16 118.0 (6)
O8—Fe1—O1 88.07 (17) O6—C15—C16 120.6 (5)
O3—Fe1—O6 89.54 (16) C17—C16—C28 118.1 (6)
O8—Fe1—O6 176.91 (17) C17—C16—C15 124.6 (5)
O1—Fe1—O6 94.87 (18) C28—C16—C15 117.3 (5)
O3—Fe1—N3 88.95 (17) C16—C17—C25 121.0 (5)
O8—Fe1—N3 90.20 (17) C16—C17—N3 120.9 (5)
O1—Fe1—N3 90.46 (18) C25—C17—N3 118.1 (5)
O6—Fe1—N3 90.70 (17) N3—C18—C19 125.1 (5)
O3—Fe1—N1 89.48 (17) N3—C18—H18A 117.5
O8—Fe1—N1 90.51 (17) C19—C18—H18A 117.5
O1—Fe1—N1 91.17 (18) C24—C19—C20 120.6 (5)
O6—Fe1—N1 88.50 (18) C24—C19—C18 117.1 (5)
N3—Fe1—N1 178.24 (18) C20—C19—C18 122.1 (5)
C4—N1—C3 118.4 (4) O8—C20—C21 119.8 (5)
C4—N1—Fe1 122.0 (4) O8—C20—C19 123.0 (5)
C3—N1—Fe1 119.6 (3) C21—C20—C19 117.2 (5)
O5—N2—O4 122.6 (6) C22—C21—C20 122.2 (6)
O5—N2—C9 118.8 (6) C22—C21—H21A 118.9
O4—N2—C9 118.5 (7) C20—C21—H21A 118.9
C18—N3—C17 117.6 (4) C21—C22—C23 119.4 (6)
C18—N3—Fe1 121.1 (4) C21—C22—H22A 120.3
C17—N3—Fe1 121.2 (3) C23—C22—H22A 120.3
O9—N4—O10 124.1 (7) C24—C23—C22 122.2 (6)
O9—N4—C23 118.8 (8) C24—C23—N4 118.1 (7)
O10—N4—C23 117.1 (9) C22—C23—N4 119.6 (7)
C29—N5—C33 117.3 (14) C23—C24—C19 118.2 (6)
C29—N5—C31 117.2 (13) C23—C24—H24A 120.9
C33—N5—C31 110.2 (12) C19—C24—H24A 120.9
C29—N5—H5A 103.2 C26—C25—C17 118.0 (6)
C33—N5—H5A 103.2 C26—C25—H25A 121.0
C31—N5—H5A 103.2 C17—C25—H25A 121.0
C1—O1—Fe1 130.3 (4) C27—C26—C25 121.1 (7)
C6—O3—Fe1 122.5 (3) C27—C26—H26A 119.4
C15—O6—Fe1 130.9 (4) C25—C26—H26A 119.4
C20—O8—Fe1 122.8 (3) C28—C27—C26 120.8 (7)
O2—C1—O1 121.5 (6) C28—C27—H27A 119.6
O2—C1—C2 119.1 (6) C26—C27—H27A 119.6
O1—C1—C2 119.3 (5) C27—C28—C16 120.9 (7)
C3—C2—C14 118.2 (6) C27—C28—H28A 119.5
C3—C2—C1 124.7 (5) C16—C28—H28A 119.5
C14—C2—C1 117.2 (6) C30—C29—N5 117.5 (17)
C11—C3—C2 121.0 (5) C30—C29—H29A 107.9
C11—C3—N1 118.4 (5) N5—C29—H29A 107.9
C2—C3—N1 120.5 (5) C30—C29—H29B 107.9
N1—C4—C5 124.9 (5) N5—C29—H29B 107.9
N1—C4—H4A 117.5 H29A—C29—H29B 107.2
C5—C4—H4A 117.5 C29—C30—H30A 109.5
C10—C5—C6 119.3 (5) C29—C30—H30B 109.5
C10—C5—C4 118.6 (5) H30A—C30—H30B 109.5
C6—C5—C4 122.0 (5) C29—C30—H30C 109.5
O3—C6—C7 118.8 (5) H30A—C30—H30C 109.5
O3—C6—C5 122.5 (5) H30B—C30—H30C 109.5
C7—C6—C5 118.7 (5) C32—C31—N5 116.5 (13)
C8—C7—C6 120.8 (6) C32—C31—H31A 108.2
C8—C7—H7A 119.6 N5—C31—H31A 108.2
C6—C7—H7A 119.6 C32—C31—H31B 108.2
C7—C8—C9 119.6 (6) N5—C31—H31B 108.2
C7—C8—H8A 120.2 H31A—C31—H31B 107.3
C9—C8—H8A 120.2 C31—C32—H32A 109.5
C10—C9—C8 121.8 (6) C31—C32—H32B 109.5
C10—C9—N2 118.9 (6) H32A—C32—H32B 109.5
C8—C9—N2 119.3 (6) C31—C32—H32C 109.5
C9—C10—C5 119.6 (6) H32A—C32—H32C 109.5
C9—C10—H10A 120.2 H32B—C32—H32C 109.5
C5—C10—H10A 120.2 C34—C33—N5 114.7 (16)
C3—C11—C12 118.8 (7) C34—C33—H33A 108.6
C3—C11—H11A 120.6 N5—C33—H33A 108.6
C12—C11—H11A 120.6 C34—C33—H33B 108.6
C13—C12—C11 120.6 (7) N5—C33—H33B 108.6
C13—C12—H12A 119.7 H33A—C33—H33B 107.6
C11—C12—H12A 119.7 C33—C34—H34A 109.5
C12—C13—C14 120.3 (7) C33—C34—H34B 109.5
C12—C13—H13A 119.9 H34A—C34—H34B 109.5
C14—C13—H13A 119.9 C33—C34—H34C 109.5
C13—C14—C2 121.0 (7) H34A—C34—H34C 109.5
C13—C14—H14A 119.5 H34B—C34—H34C 109.5
C2—C14—H14A 119.5
O3—Fe1—N1—C4 30.7 (4) C7—C8—C9—C10 −1.2 (9)
O8—Fe1—N1—C4 −56.8 (4) C7—C8—C9—N2 179.2 (5)
O1—Fe1—N1—C4 −144.9 (4) O5—N2—C9—C10 4.0 (9)
O6—Fe1—N1—C4 120.2 (4) O4—N2—C9—C10 −174.4 (6)
N3—Fe1—N1—C4 57 (6) O5—N2—C9—C8 −176.5 (6)
O3—Fe1—N1—C3 −149.0 (4) O4—N2—C9—C8 5.2 (8)
O8—Fe1—N1—C3 123.5 (4) C8—C9—C10—C5 −1.6 (8)
O1—Fe1—N1—C3 35.4 (4) N2—C9—C10—C5 177.9 (5)
O6—Fe1—N1—C3 −59.4 (4) C6—C5—C10—C9 2.5 (8)
N3—Fe1—N1—C3 −123 (6) C4—C5—C10—C9 −179.6 (5)
O3—Fe1—N3—C18 −54.7 (4) C2—C3—C11—C12 −2.4 (10)
O8—Fe1—N3—C18 32.8 (4) N1—C3—C11—C12 178.8 (6)
O1—Fe1—N3—C18 120.9 (4) C3—C11—C12—C13 0.2 (13)
O6—Fe1—N3—C18 −144.2 (4) C11—C12—C13—C14 0.9 (14)
N1—Fe1—N3—C18 −81 (6) C12—C13—C14—C2 0.2 (13)
O3—Fe1—N3—C17 122.5 (4) C3—C2—C14—C13 −2.3 (10)
O8—Fe1—N3—C17 −150.0 (4) C1—C2—C14—C13 178.0 (7)
O1—Fe1—N3—C17 −61.9 (4) Fe1—O6—C15—O7 170.2 (4)
O6—Fe1—N3—C17 32.9 (4) Fe1—O6—C15—C16 −10.4 (8)
N1—Fe1—N3—C17 96 (6) O7—C15—C16—C17 −158.3 (6)
O3—Fe1—O1—C1 −108 (2) O6—C15—C16—C17 22.3 (9)
O8—Fe1—O1—C1 −100.2 (5) O7—C15—C16—C28 20.7 (9)
O6—Fe1—O1—C1 78.8 (5) O6—C15—C16—C28 −158.7 (6)
N3—Fe1—O1—C1 169.6 (5) C28—C16—C17—C25 3.2 (10)
N1—Fe1—O1—C1 −9.8 (5) C15—C16—C17—C25 −177.9 (6)
O8—Fe1—O3—C6 46.6 (4) C28—C16—C17—N3 −178.6 (6)
O1—Fe1—O3—C6 54 (2) C15—C16—C17—N3 0.4 (9)
O6—Fe1—O3—C6 −132.5 (4) C18—N3—C17—C16 146.0 (6)
N3—Fe1—O3—C6 136.8 (4) Fe1—N3—C17—C16 −31.3 (7)
N1—Fe1—O3—C6 −44.0 (4) C18—N3—C17—C25 −35.7 (8)
O3—Fe1—O6—C15 −102.1 (5) Fe1—N3—C17—C25 147.0 (5)
O8—Fe1—O6—C15 −120 (3) C17—N3—C18—C19 170.4 (5)
O1—Fe1—O6—C15 77.3 (5) Fe1—N3—C18—C19 −12.3 (8)
N3—Fe1—O6—C15 −13.2 (5) N3—C18—C19—C24 170.6 (6)
N1—Fe1—O6—C15 168.4 (5) N3—C18—C19—C20 −13.5 (9)
O3—Fe1—O8—C20 46.8 (4) Fe1—O8—C20—C21 −149.8 (4)
O1—Fe1—O8—C20 −132.6 (4) Fe1—O8—C20—C19 30.0 (7)
O6—Fe1—O8—C20 65 (3) C24—C19—C20—O8 −179.6 (5)
N3—Fe1—O8—C20 −42.1 (4) C18—C19—C20—O8 4.6 (8)
N1—Fe1—O8—C20 136.3 (4) C24—C19—C20—C21 0.2 (8)
Fe1—O1—C1—O2 165.6 (4) C18—C19—C20—C21 −175.5 (5)
Fe1—O1—C1—C2 −17.5 (8) O8—C20—C21—C22 177.5 (6)
O2—C1—C2—C3 −155.9 (6) C19—C20—C21—C22 −2.4 (9)
O1—C1—C2—C3 27.0 (8) C20—C21—C22—C23 1.7 (10)
O2—C1—C2—C14 23.7 (8) C21—C22—C23—C24 1.1 (11)
O1—C1—C2—C14 −153.3 (6) C21—C22—C23—N4 179.0 (6)
C14—C2—C3—C11 3.4 (9) O9—N4—C23—C24 9.0 (12)
C1—C2—C3—C11 −176.9 (6) O10—N4—C23—C24 −170.3 (7)
C14—C2—C3—N1 −177.8 (5) O9—N4—C23—C22 −169.0 (8)
C1—C2—C3—N1 1.9 (8) O10—N4—C23—C22 11.7 (11)
C4—N1—C3—C11 −36.8 (8) C22—C23—C24—C19 −3.2 (10)
Fe1—N1—C3—C11 142.9 (5) N4—C23—C24—C19 178.9 (6)
C4—N1—C3—C2 144.4 (5) C20—C19—C24—C23 2.5 (9)
Fe1—N1—C3—C2 −35.9 (7) C18—C19—C24—C23 178.4 (6)
C3—N1—C4—C5 171.3 (5) C16—C17—C25—C26 −3.8 (11)
Fe1—N1—C4—C5 −8.4 (7) N3—C17—C25—C26 177.9 (7)
N1—C4—C5—C10 166.9 (5) C17—C25—C26—C27 3.0 (14)
N1—C4—C5—C6 −15.2 (8) C25—C26—C27—C28 −1.5 (17)
Fe1—O3—C6—C7 −145.1 (4) C26—C27—C28—C16 0.8 (15)
Fe1—O3—C6—C5 34.6 (6) C17—C16—C28—C27 −1.6 (12)
C10—C5—C6—O3 179.6 (5) C15—C16—C28—C27 179.3 (8)
C4—C5—C6—O3 1.8 (8) C33—N5—C29—C30 172.4 (18)
C10—C5—C6—C7 −0.6 (7) C31—N5—C29—C30 −53 (2)
C4—C5—C6—C7 −178.5 (5) C29—N5—C31—C32 −53.9 (18)
O3—C6—C7—C8 177.6 (5) C33—N5—C31—C32 83.7 (17)
C5—C6—C7—C8 −2.2 (8) C29—N5—C33—C34 −60.7 (19)
C6—C7—C8—C9 3.1 (9) C31—N5—C33—C34 161.8 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5A···O7 0.91 2.00 2.865 (13) 159

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2002).

References

  1. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Laye, R. & Sanudo, E. C. (2009). Inorg. Chim. Acta, 362, 2205–2212.
  4. Lu, L.-P., Yao, S.-Q. & Zhu, M.-L. (2006). Acta Cryst. C62, m220–m222. [DOI] [PubMed]
  5. Patel, R. N. (2009). Indian J. Chem. A48, 1370–1377.
  6. Patel, R. N., Gundla, V. L. N. & Patel, D. K. (2008). Polyhedron, 27, 1054–1060.
  7. Rosair, G. M., Dey, D. K., Samanta, B. & Mitra, S. (2002). Acta Cryst. C58, m266–m267. [DOI] [PubMed]
  8. Rotondo, A., Bruno, G., Brancatelli, G., Nicolo, F. & Armentano, D. (2009). Inorg. Chim. Acta, 326, 247–252.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011196/zk2002sup1.cif

e-67-0m593-sup1.cif (30.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011196/zk2002Isup2.hkl

e-67-0m593-Isup2.hkl (314.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES