Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1127. doi: 10.1107/S1600536811013195

rac-5-Acetyl-6-hy­droxy-3,6-dimethyl-4-phenyl-4,5,6,7-tetra­hydro-2H-indazole

Abel M Maharramov a,*, Arif I Ismiyev a, Bahruz A Rashidov a, Ilkin V Aliyev a
PMCID: PMC3089358  PMID: 21754439

Abstract

The title compound, C17H20N2O2, is chiral but crystallizes in a centrosymmetric space group as a racemate, the relative configuration at the stereogenic centres being 2S*,3R*,4S*. The cyclo­hexane ring adopts a half-chair conformation while the pyrazole ring has an envelope conformation. The crystal packing displays inter­molecular O—H⋯N and N—H⋯O hydrogen bonding.

Related literature

For background to the use of β-cyclo­ketols as synthons in syntheses of pyrazoles, see: Pramula et al. (1985).graphic file with name e-67-o1127-scheme1.jpg

Experimental

Crystal data

  • C17H20N2O2

  • M r = 284.35

  • Monoclinic, Inline graphic

  • a = 18.6999 (9) Å

  • b = 5.6415 (3) Å

  • c = 28.4855 (14) Å

  • β = 94.498 (1)°

  • V = 2995.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.975, T max = 0.984

  • 16597 measured reflections

  • 3709 independent reflections

  • 3079 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.129

  • S = 1.00

  • 3709 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus, (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks Global, I. DOI: 10.1107/S1600536811013195/kp2321sup1.cif

e-67-o1127-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013195/kp2321Isup2.hkl

e-67-o1127-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 2.03 2.8487 (14) 178
N2—H2C⋯O1ii 0.86 2.11 2.9587 (15) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Professor Victor N. Khrustalev for fruitful discussions and help in this work.

supplementary crystallographic information

Comment

The exploitation of a simple molecule with different functionalities for the synthesis of heterocycles is usefula approach. In fact, the β-cycloketols has been used as an effective synthon in some projected syntheses of pyrazoles (Pramula et al. 1985).

In the title compound, C17H20N2O2 (I), the cyclohexane ring adopts a half-chair conformation (Fig. 1). Cyclohexane ring has a chair conformation. The phenyl ring is in a pseudo-equatorial position. The torsion angle between the acetyl group and the phenyl substituent (C7—C2—C3—C13) is 64.88 (13) °indicating the pseudo-axial location of hydrogen atoms at C2 and C3. The crystal of (I) is racemate and consists of enantiomeric pairs where the relative configuration of the centres are 2S*,3R*,4S*. The crystal structure involves N—H···O and O—H···N intermolecular hydrogen bonds (Table 1 and Fig. 2).

Experimental

2,4-Diacetyl-5-hydroxy-5-metyl-3-phenilcyclohexanon (20 mmol), hydrazine hydrate (20 mmol) were dissolved in 20 mL ethanol. The mixture was stirred at 345–350 K for 10 h. After cooling to room temperature, white crystals were obtained. The crystals were filtered off and washed with ethanol. Then, they were dissolved in ethanol (50 mL) and recrystallised to yield colourless block-shaped crystals suitable for data collection.

Refinement

The hydrogen atoms of the NH and OH-groups of the molecule were located in a difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions and refined in the riding model with the fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of (I) with hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C17H20N2O2 F(000) = 1216
Mr = 284.35 Dx = 1.261 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6277 reflections
a = 18.6999 (9) Å θ = 2.5–28.2°
b = 5.6415 (3) Å µ = 0.08 mm1
c = 28.4855 (14) Å T = 296 K
β = 94.498 (1)° Prism, colorless
V = 2995.8 (3) Å3 0.30 × 0.30 × 0.20 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer 3709 independent reflections
Radiation source: fine-focus sealed tube 3079 reflections with I > 2σ(I)
graphite Rint = 0.021
phi and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −24→24
Tmin = 0.975, Tmax = 0.984 k = −7→7
16597 measured reflections l = −38→37

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: difference Fourier map
wR(F2) = 0.129 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0701P)2 + 1.7992P] where P = (Fo2 + 2Fc2)/3
3709 reflections (Δ/σ)max = 0.001
193 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.76048 (5) 0.7902 (2) 0.61991 (4) 0.0481 (3)
O2 0.62374 (5) 0.43848 (16) 0.52715 (3) 0.0372 (2)
H2A 0.6097 0.4443 0.4992 0.056*
N1 0.42526 (6) 0.5528 (2) 0.57008 (4) 0.0369 (3)
N2 0.41169 (6) 0.3900 (2) 0.60311 (4) 0.0390 (3)
H2C 0.3693 0.3393 0.6074 0.047*
C1 0.47121 (7) 0.3149 (3) 0.62867 (5) 0.0347 (3)
C1A 0.52770 (6) 0.4380 (2) 0.61152 (4) 0.0291 (3)
C2 0.60733 (6) 0.4279 (2) 0.62496 (4) 0.0273 (2)
H2B 0.6259 0.2787 0.6132 0.033*
C3 0.64412 (6) 0.6363 (2) 0.60052 (4) 0.0266 (2)
H3A 0.6312 0.7817 0.6167 0.032*
C4 0.61636 (6) 0.6655 (2) 0.54788 (4) 0.0284 (2)
C5 0.53694 (7) 0.7403 (2) 0.54570 (5) 0.0335 (3)
H5A 0.5334 0.9023 0.5567 0.040*
H5B 0.5164 0.7336 0.5134 0.040*
C5A 0.49626 (6) 0.5808 (2) 0.57540 (4) 0.0313 (3)
C6 0.46830 (8) 0.1288 (3) 0.66523 (6) 0.0514 (4)
H6A 0.4196 0.1082 0.6729 0.077*
H6B 0.4975 0.1754 0.6929 0.077*
H6C 0.4859 −0.0178 0.6535 0.077*
C7 0.62509 (6) 0.4376 (2) 0.67804 (4) 0.0309 (3)
C8 0.59834 (10) 0.6182 (3) 0.70426 (5) 0.0516 (4)
H8A 0.5690 0.7324 0.6892 0.062*
C9 0.61420 (11) 0.6334 (4) 0.75247 (6) 0.0605 (5)
H9A 0.5956 0.7568 0.7694 0.073*
C10 0.65747 (10) 0.4662 (4) 0.77516 (5) 0.0561 (4)
H10A 0.6686 0.4763 0.8075 0.067*
C11 0.68412 (9) 0.2846 (4) 0.74998 (6) 0.0565 (4)
H11A 0.7131 0.1701 0.7653 0.068*
C12 0.66811 (8) 0.2700 (3) 0.70155 (5) 0.0422 (3)
H12A 0.6866 0.1457 0.6848 0.051*
C13 0.72575 (6) 0.6185 (2) 0.60593 (4) 0.0324 (3)
C14 0.76231 (8) 0.3969 (3) 0.59270 (7) 0.0492 (4)
H14A 0.8133 0.4200 0.5960 0.074*
H14B 0.7476 0.3575 0.5606 0.074*
H14C 0.7496 0.2701 0.6129 0.074*
C15 0.65806 (8) 0.8528 (3) 0.52295 (5) 0.0392 (3)
H15A 0.6384 0.8680 0.4909 0.059*
H15B 0.7075 0.8065 0.5234 0.059*
H15C 0.6546 1.0021 0.5388 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0303 (5) 0.0525 (6) 0.0605 (7) −0.0132 (4) −0.0030 (4) −0.0091 (5)
O2 0.0473 (5) 0.0326 (5) 0.0306 (4) 0.0027 (4) −0.0034 (4) −0.0043 (4)
N1 0.0252 (5) 0.0509 (7) 0.0342 (5) −0.0004 (5) −0.0011 (4) 0.0027 (5)
N2 0.0234 (5) 0.0517 (7) 0.0418 (6) −0.0053 (5) 0.0024 (4) 0.0039 (5)
C1 0.0266 (6) 0.0406 (7) 0.0372 (6) −0.0024 (5) 0.0034 (5) 0.0025 (5)
C1A 0.0241 (5) 0.0327 (6) 0.0301 (6) −0.0016 (4) 0.0005 (4) 0.0015 (5)
C2 0.0237 (5) 0.0292 (6) 0.0286 (5) 0.0000 (4) −0.0005 (4) 0.0015 (4)
C3 0.0220 (5) 0.0275 (5) 0.0299 (5) −0.0015 (4) 0.0004 (4) −0.0016 (4)
C4 0.0277 (5) 0.0289 (6) 0.0284 (5) −0.0011 (4) 0.0008 (4) 0.0005 (4)
C5 0.0293 (6) 0.0365 (6) 0.0338 (6) 0.0014 (5) −0.0019 (5) 0.0066 (5)
C5A 0.0256 (6) 0.0375 (6) 0.0302 (6) −0.0003 (5) −0.0009 (4) 0.0005 (5)
C6 0.0388 (8) 0.0555 (9) 0.0611 (10) −0.0003 (7) 0.0110 (7) 0.0223 (8)
C7 0.0254 (5) 0.0364 (6) 0.0305 (6) −0.0010 (5) −0.0006 (4) 0.0036 (5)
C8 0.0628 (10) 0.0550 (9) 0.0363 (7) 0.0217 (8) −0.0006 (7) −0.0010 (7)
C9 0.0754 (12) 0.0694 (12) 0.0368 (8) 0.0071 (10) 0.0062 (8) −0.0096 (8)
C10 0.0557 (9) 0.0811 (13) 0.0306 (7) −0.0116 (9) −0.0017 (6) 0.0079 (8)
C11 0.0501 (9) 0.0747 (12) 0.0429 (8) 0.0074 (8) −0.0067 (7) 0.0210 (8)
C12 0.0390 (7) 0.0463 (8) 0.0406 (7) 0.0067 (6) 0.0000 (6) 0.0088 (6)
C13 0.0245 (5) 0.0397 (7) 0.0326 (6) −0.0046 (5) 0.0002 (4) 0.0021 (5)
C14 0.0283 (6) 0.0477 (8) 0.0723 (10) 0.0031 (6) 0.0074 (6) −0.0021 (8)
C15 0.0376 (7) 0.0406 (7) 0.0402 (7) −0.0055 (6) 0.0076 (5) 0.0066 (6)

Geometric parameters (Å, °)

O1—C13 1.2157 (17) C6—H6A 0.9600
O2—C4 1.4215 (15) C6—H6B 0.9600
O2—H2A 0.8200 C6—H6C 0.9600
N1—C5A 1.3338 (16) C7—C8 1.380 (2)
N1—N2 1.3529 (16) C7—C12 1.3803 (18)
N2—C1 1.3496 (17) C8—C9 1.385 (2)
N2—H2C 0.8600 C8—H8A 0.9300
C1—C1A 1.3847 (17) C9—C10 1.371 (3)
C1—C6 1.483 (2) C9—H9A 0.9300
C1A—C5A 1.3996 (17) C10—C11 1.367 (3)
C1A—C2 1.5093 (16) C10—H10A 0.9300
C2—C7 1.5235 (16) C11—C12 1.391 (2)
C2—C3 1.5543 (16) C11—H11A 0.9300
C2—H2B 0.9800 C12—H12A 0.9300
C3—C13 1.5256 (16) C13—C14 1.488 (2)
C3—C4 1.5566 (16) C14—H14A 0.9600
C3—H3A 0.9800 C14—H14B 0.9600
C4—C15 1.5218 (17) C14—H14C 0.9600
C4—C5 1.5405 (17) C15—H15A 0.9600
C5—C5A 1.4847 (18) C15—H15B 0.9600
C5—H5A 0.9700 C15—H15C 0.9600
C5—H5B 0.9700
C4—O2—H2A 109.5 C1—C6—H6B 109.5
C5A—N1—N2 103.94 (10) H6A—C6—H6B 109.5
C1—N2—N1 113.36 (11) C1—C6—H6C 109.5
C1—N2—H2C 123.3 H6A—C6—H6C 109.5
N1—N2—H2C 123.3 H6B—C6—H6C 109.5
N2—C1—C1A 105.78 (12) C8—C7—C12 117.74 (12)
N2—C1—C6 121.79 (12) C8—C7—C2 120.25 (11)
C1A—C1—C6 132.37 (12) C12—C7—C2 122.01 (12)
C1—C1A—C5A 105.07 (11) C7—C8—C9 121.61 (15)
C1—C1A—C2 131.02 (11) C7—C8—H8A 119.2
C5A—C1A—C2 123.88 (11) C9—C8—H8A 119.2
C1A—C2—C7 112.60 (10) C10—C9—C8 119.82 (17)
C1A—C2—C3 108.68 (9) C10—C9—H9A 120.1
C7—C2—C3 110.35 (9) C8—C9—H9A 120.1
C1A—C2—H2B 108.4 C11—C10—C9 119.62 (15)
C7—C2—H2B 108.4 C11—C10—H10A 120.2
C3—C2—H2B 108.4 C9—C10—H10A 120.2
C13—C3—C2 112.29 (10) C10—C11—C12 120.39 (15)
C13—C3—C4 111.09 (9) C10—C11—H11A 119.8
C2—C3—C4 112.68 (9) C12—C11—H11A 119.8
C13—C3—H3A 106.8 C7—C12—C11 120.82 (15)
C2—C3—H3A 106.8 C7—C12—H12A 119.6
C4—C3—H3A 106.8 C11—C12—H12A 119.6
O2—C4—C15 111.21 (10) O1—C13—C14 120.56 (12)
O2—C4—C5 110.78 (10) O1—C13—C3 119.02 (12)
C15—C4—C5 108.59 (10) C14—C13—C3 120.39 (11)
O2—C4—C3 105.60 (9) C13—C14—H14A 109.5
C15—C4—C3 112.25 (10) C13—C14—H14B 109.5
C5—C4—C3 108.38 (9) H14A—C14—H14B 109.5
C5A—C5—C4 110.28 (10) C13—C14—H14C 109.5
C5A—C5—H5A 109.6 H14A—C14—H14C 109.5
C4—C5—H5A 109.6 H14B—C14—H14C 109.5
C5A—C5—H5B 109.6 C4—C15—H15A 109.5
C4—C5—H5B 109.6 C4—C15—H15B 109.5
H5A—C5—H5B 108.1 H15A—C15—H15B 109.5
N1—C5A—C1A 111.85 (11) C4—C15—H15C 109.5
N1—C5A—C5 123.86 (11) H15A—C15—H15C 109.5
C1A—C5A—C5 124.28 (11) H15B—C15—H15C 109.5
C1—C6—H6A 109.5
C5A—N1—N2—C1 −0.17 (16) N2—N1—C5A—C1A −0.17 (15)
N1—N2—C1—C1A 0.43 (16) N2—N1—C5A—C5 178.45 (12)
N1—N2—C1—C6 −177.22 (13) C1—C1A—C5A—N1 0.43 (15)
N2—C1—C1A—C5A −0.50 (15) C2—C1A—C5A—N1 178.64 (11)
C6—C1—C1A—C5A 176.80 (16) C1—C1A—C5A—C5 −178.19 (12)
N2—C1—C1A—C2 −178.53 (13) C2—C1A—C5A—C5 0.0 (2)
C6—C1—C1A—C2 −1.2 (3) C4—C5—C5A—N1 −158.94 (12)
C1—C1A—C2—C7 −47.39 (18) C4—C5—C5A—C1A 19.52 (18)
C5A—C1A—C2—C7 134.90 (13) C1A—C2—C7—C8 −53.32 (17)
C1—C1A—C2—C3 −169.96 (13) C3—C2—C7—C8 68.31 (16)
C5A—C1A—C2—C3 12.33 (16) C1A—C2—C7—C12 127.01 (13)
C1A—C2—C3—C13 −171.20 (10) C3—C2—C7—C12 −111.37 (13)
C7—C2—C3—C13 64.88 (13) C12—C7—C8—C9 0.5 (3)
C1A—C2—C3—C4 −44.84 (13) C2—C7—C8—C9 −179.23 (16)
C7—C2—C3—C4 −168.76 (9) C7—C8—C9—C10 0.0 (3)
C13—C3—C4—O2 74.30 (12) C8—C9—C10—C11 −0.5 (3)
C2—C3—C4—O2 −52.70 (12) C9—C10—C11—C12 0.6 (3)
C13—C3—C4—C15 −47.03 (14) C8—C7—C12—C11 −0.4 (2)
C2—C3—C4—C15 −174.04 (10) C2—C7—C12—C11 179.28 (13)
C13—C3—C4—C5 −166.96 (10) C10—C11—C12—C7 −0.1 (3)
C2—C3—C4—C5 66.04 (12) C2—C3—C13—O1 −129.62 (13)
O2—C4—C5—C5A 65.66 (13) C4—C3—C13—O1 103.16 (14)
C15—C4—C5—C5A −171.94 (11) C2—C3—C13—C14 52.50 (16)
C3—C4—C5—C5A −49.75 (13) C4—C3—C13—C14 −74.72 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···N1i 0.82 2.03 2.8487 (14) 178
N2—H2C···O1ii 0.86 2.11 2.9587 (15) 168

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2321).

References

  1. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Pramula, B., Rajanarender, E., Shoolery, J. N. & Krishna, M. (1985). Ind. J. Chem. Sect. B, 24, 1255–1258.
  4. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks Global, I. DOI: 10.1107/S1600536811013195/kp2321sup1.cif

e-67-o1127-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013195/kp2321Isup2.hkl

e-67-o1127-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES