Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1144. doi: 10.1107/S1600536811013389

3-Acetyl-5-hy­droxy-2-methyl­anthra[1,2-b]furan-6,11-dione

Rohaya Ahmad a, Mohamad Faiz Jeinie a, Nor Hadiani Ismail a, Hazrina Hazni b, Seik Weng Ng b,*
PMCID: PMC3089359  PMID: 21754452

Abstract

The asymmetric unit of the title compound, C19H12O5, contains two independent mol­ecules, both slightly buckled along an axis passing through the C=O bonds of the anthraquinone ring system (r.m.s. deviation of non-H atoms = 0.082 and 0.148 Å): the benzene rings are twisted to each other by 4.3 (3)°in one mol­ecule and 10.6(3)° in the other. In both mol­ecules, the hy­droxy group forms an intra­molecular O—H⋯O hydrogen bond. The two independent mol­ecules inter­act by π–π stacking with a centroid–centroid distance of 3.539 (2) Å between hy­droxy­benzene rings of adjacent mol­ecules.

Related literature

For background to the synthesis, see: Boddy et al. (1986).graphic file with name e-67-o1144-scheme1.jpg

Experimental

Crystal data

  • C19H12O5

  • M r = 320.29

  • Monoclinic, Inline graphic

  • a = 12.5739 (9) Å

  • b = 22.0375 (12) Å

  • c = 10.7453 (8) Å

  • β = 110.342 (8)°

  • V = 2791.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.35 × 0.05 × 0.02 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.962, T max = 0.998

  • 12061 measured reflections

  • 4905 independent reflections

  • 2305 reflections with I > 2σ(I)

  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.149

  • S = 0.95

  • 4905 reflections

  • 445 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013389/xu5188sup1.cif

e-67-o1144-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013389/xu5188Isup2.hkl

e-67-o1144-Isup2.hkl (240.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4 0.84 (1) 1.82 (2) 2.596 (4) 153 (4)
O10—H10⋯O9 0.84 (1) 1.77 (3) 2.552 (4) 153 (6)

Acknowledgments

We thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound (Scheme I) is one of the intermediates of the multi-stepsynthesis of a substituted isobenzofuran from anthradifuran (Boddy et al., 1986). In the present microwave-assisted synthesis, even the 1,4-dihdyroanthraquinone reactant can be prepared under microwave conditions.

The two independent molecules C19H12O5 (Fig. 1 and Fig. 2) are both slightly buckled along an axis passing through the C═O bonds of the anthraquinone ring-system; for one molecule, the benzene rings are twisted by 4.3 (3) ° and for the other, the benzene rings are twisted by 10.6 (3)°. The two independent molecules interact by π–π stacking with a centroid-to-centroid distance of 3.539 (2) Å between hydroxybenzene rings of adjacent molecules.

Experimental

Phthalic anhydride (0.001 mol) and hydroquinone (0.001 mol) were reacted over montmorillonite K10 clay (without any solvent) in a microwave oven. The reactants were subject to microwave radiation for 1 h. This afforded 1,4-dihydroxyanthraquinone in 95% yield. In the next step, acetylacetone (0.001 mol) was added to the prepared 1,4-dihydroxyanthraquinone (0.001 mol) in the presence of 4-dimethylaminopyridine (0.01 mol). The mixture was agained subject to microwave irradiation (100% power level for 1 h) to give the title compound, whose formulation was established by 1H NMR spectroscopy; yield 95% yield. Orange crystals were obtained by recrystallization from a hexane-chloroform (5:95) mixture.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å; their temperature factors were refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of one independent molecule of C19H12O5 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Thermal ellipsoid plot (Barbour, 2001) of second independent molecule of C19H12O5 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 3.

Fig. 3.

π–π Stacking of the two independent molecules of C19H12O5.

Crystal data

C19H12O5 F(000) = 1328
Mr = 320.29 Dx = 1.524 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1530 reflections
a = 12.5739 (9) Å θ = 2.2–29.1°
b = 22.0375 (12) Å µ = 0.11 mm1
c = 10.7453 (8) Å T = 100 K
β = 110.342 (8)° Plate, orange
V = 2791.8 (3) Å3 0.35 × 0.05 × 0.02 mm
Z = 8

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4905 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2305 reflections with I > 2σ(I)
Mirror Rint = 0.093
Detector resolution: 10.4041 pixels mm-1 θmax = 25.0°, θmin = 2.2°
ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −26→21
Tmin = 0.962, Tmax = 0.998 l = −12→9
12061 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.029P)2] where P = (Fo2 + 2Fc2)/3
4905 reflections (Δ/σ)max = 0.001
445 parameters Δρmax = 0.25 e Å3
2 restraints Δρmin = −0.28 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1639 (2) 0.63359 (13) 0.4656 (3) 0.0307 (8)
O2 0.1956 (2) 0.42672 (12) 0.4828 (3) 0.0225 (7)
O3 0.1802 (2) 0.32131 (13) 0.6137 (3) 0.0308 (8)
O4 0.0110 (2) 0.44812 (14) 0.9299 (3) 0.0406 (9)
O5 0.0397 (3) 0.55000 (14) 0.8246 (3) 0.0303 (8)
O6 0.4668 (2) 0.26821 (13) 0.8213 (3) 0.0361 (8)
O7 0.3238 (2) 0.41683 (13) 1.0149 (3) 0.0256 (7)
O8 0.2983 (2) 0.53832 (13) 1.0463 (3) 0.0315 (8)
O9 0.4542 (2) 0.58374 (13) 0.6465 (3) 0.0297 (8)
O10 0.4846 (3) 0.47096 (16) 0.6165 (3) 0.0313 (8)
C1 0.2569 (4) 0.60289 (19) 0.3177 (5) 0.0344 (13)
H1A 0.2554 0.6464 0.2986 0.052*
H1B 0.2167 0.5807 0.2358 0.052*
H1C 0.3357 0.5889 0.3537 0.052*
C2 0.2001 (3) 0.5916 (2) 0.4175 (4) 0.0242 (11)
C3 0.1909 (3) 0.52918 (19) 0.4607 (4) 0.0218 (11)
C4 0.2152 (3) 0.4754 (2) 0.4141 (4) 0.0235 (11)
C5 0.2569 (3) 0.4558 (2) 0.3062 (4) 0.0291 (11)
H5A 0.3127 0.4232 0.3390 0.044*
H5B 0.2925 0.4904 0.2784 0.044*
H5C 0.1930 0.4411 0.2304 0.044*
C6 0.1547 (3) 0.45001 (19) 0.5772 (4) 0.0205 (10)
C7 0.1232 (3) 0.41721 (18) 0.6675 (4) 0.0195 (10)
C8 0.1320 (3) 0.3503 (2) 0.6764 (4) 0.0249 (11)
C9 0.0804 (3) 0.31883 (19) 0.7640 (4) 0.0240 (11)
C10 0.0730 (3) 0.2559 (2) 0.7613 (4) 0.0302 (12)
H10A 0.1046 0.2333 0.7073 0.036*
C11 0.0198 (4) 0.2258 (2) 0.8367 (5) 0.0373 (13)
H11 0.0144 0.1828 0.8339 0.045*
C12 −0.0259 (4) 0.2590 (2) 0.9169 (5) 0.0370 (13)
H12 −0.0635 0.2385 0.9676 0.044*
C13 −0.0167 (3) 0.3215 (2) 0.9230 (4) 0.0302 (12)
H13 −0.0455 0.3438 0.9799 0.036*
C14 0.0356 (3) 0.3520 (2) 0.8445 (4) 0.0249 (11)
C15 0.0417 (3) 0.4196 (2) 0.8474 (4) 0.0280 (12)
C16 0.0813 (3) 0.45079 (19) 0.7526 (4) 0.0219 (10)
C17 0.0767 (3) 0.5151 (2) 0.7443 (4) 0.0223 (11)
C18 0.1098 (3) 0.54647 (19) 0.6509 (4) 0.0210 (10)
H18 0.1059 0.5895 0.6459 0.025*
C19 0.1483 (3) 0.51364 (18) 0.5662 (4) 0.0178 (10)
C20 0.3954 (4) 0.22087 (18) 0.9754 (4) 0.0335 (12)
H20A 0.4295 0.1844 0.9528 0.050*
H20B 0.3133 0.2150 0.9502 0.050*
H20C 0.4284 0.2282 1.0712 0.050*
C21 0.4183 (4) 0.2744 (2) 0.9022 (4) 0.0273 (11)
C22 0.3851 (3) 0.33562 (18) 0.9271 (4) 0.0216 (10)
C23 0.3357 (3) 0.35386 (19) 1.0167 (4) 0.0232 (11)
C24 0.2934 (4) 0.32387 (19) 1.1114 (4) 0.0331 (12)
H24A 0.2659 0.2832 1.0789 0.050*
H24B 0.2310 0.3477 1.1215 0.050*
H24C 0.3548 0.3206 1.1975 0.050*
C25 0.3663 (3) 0.43878 (19) 0.9207 (4) 0.0211 (10)
C26 0.3693 (3) 0.49820 (19) 0.8854 (4) 0.0188 (10)
C27 0.3289 (3) 0.54833 (19) 0.9518 (4) 0.0223 (10)
C28 0.3271 (3) 0.61072 (19) 0.8981 (4) 0.0223 (11)
C29 0.2850 (4) 0.65801 (19) 0.9521 (5) 0.0303 (12)
H29 0.2585 0.6506 1.0235 0.036*
C30 0.2814 (4) 0.7162 (2) 0.9015 (5) 0.0341 (12)
H30 0.2503 0.7485 0.9364 0.041*
C31 0.3238 (4) 0.7273 (2) 0.7989 (5) 0.0346 (12)
H31 0.3232 0.7673 0.7658 0.042*
C32 0.3665 (3) 0.6800 (2) 0.7460 (5) 0.0309 (12)
H32 0.3942 0.6874 0.6756 0.037*
C33 0.3689 (3) 0.62214 (19) 0.7951 (4) 0.0203 (10)
C34 0.4148 (3) 0.5720 (2) 0.7356 (4) 0.0249 (11)
C35 0.4106 (3) 0.51037 (19) 0.7802 (4) 0.0193 (10)
C36 0.4479 (3) 0.46163 (19) 0.7192 (4) 0.0216 (10)
C37 0.4450 (3) 0.4014 (2) 0.7599 (4) 0.0246 (11)
H37 0.4705 0.3692 0.7187 0.030*
C38 0.4041 (3) 0.39022 (19) 0.8614 (4) 0.0218 (11)
H5 0.022 (3) 0.5247 (15) 0.873 (4) 0.034 (15)*
H10 0.478 (5) 0.5087 (7) 0.603 (6) 0.09 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0392 (19) 0.0233 (18) 0.030 (2) −0.0006 (15) 0.0133 (16) −0.0033 (16)
O2 0.0276 (17) 0.0213 (17) 0.0210 (18) 0.0004 (14) 0.0117 (14) 0.0014 (14)
O3 0.0354 (19) 0.0278 (19) 0.031 (2) −0.0003 (15) 0.0138 (16) −0.0033 (16)
O4 0.051 (2) 0.047 (2) 0.037 (2) 0.0000 (17) 0.0321 (19) −0.0083 (18)
O5 0.0377 (19) 0.031 (2) 0.029 (2) −0.0037 (17) 0.0201 (17) −0.0064 (17)
O6 0.048 (2) 0.0312 (19) 0.036 (2) 0.0053 (17) 0.0242 (18) −0.0004 (17)
O7 0.0329 (18) 0.0278 (19) 0.0185 (18) 0.0013 (15) 0.0118 (15) 0.0035 (15)
O8 0.045 (2) 0.0299 (19) 0.024 (2) −0.0007 (16) 0.0181 (17) −0.0013 (16)
O9 0.0312 (18) 0.036 (2) 0.028 (2) 0.0023 (15) 0.0180 (16) 0.0068 (16)
O10 0.0380 (19) 0.037 (2) 0.027 (2) 0.0013 (18) 0.0215 (16) 0.0040 (18)
C1 0.047 (3) 0.024 (3) 0.039 (3) 0.003 (2) 0.023 (3) 0.008 (2)
C2 0.022 (2) 0.029 (3) 0.020 (3) −0.003 (2) 0.007 (2) 0.000 (2)
C3 0.020 (2) 0.025 (3) 0.020 (3) −0.001 (2) 0.007 (2) −0.003 (2)
C4 0.021 (2) 0.029 (3) 0.019 (3) 0.001 (2) 0.004 (2) 0.002 (2)
C5 0.033 (3) 0.033 (3) 0.029 (3) −0.001 (2) 0.020 (2) −0.001 (2)
C6 0.017 (2) 0.027 (3) 0.016 (3) 0.002 (2) 0.004 (2) −0.004 (2)
C7 0.015 (2) 0.024 (3) 0.016 (3) −0.002 (2) 0.0015 (19) −0.002 (2)
C8 0.022 (2) 0.032 (3) 0.017 (3) −0.001 (2) 0.003 (2) 0.000 (2)
C9 0.022 (2) 0.031 (3) 0.015 (3) −0.002 (2) 0.001 (2) 0.001 (2)
C10 0.029 (3) 0.034 (3) 0.025 (3) 0.000 (2) 0.006 (2) 0.005 (2)
C11 0.042 (3) 0.036 (3) 0.029 (3) −0.003 (3) 0.006 (3) 0.011 (3)
C12 0.036 (3) 0.046 (3) 0.028 (3) −0.003 (3) 0.010 (2) 0.016 (3)
C13 0.029 (3) 0.044 (3) 0.020 (3) −0.001 (2) 0.011 (2) 0.002 (2)
C14 0.020 (2) 0.033 (3) 0.019 (3) −0.002 (2) 0.005 (2) 0.004 (2)
C15 0.025 (3) 0.039 (3) 0.024 (3) −0.003 (2) 0.014 (2) −0.004 (2)
C16 0.016 (2) 0.029 (3) 0.020 (3) −0.002 (2) 0.007 (2) 0.000 (2)
C17 0.020 (2) 0.035 (3) 0.015 (3) 0.001 (2) 0.009 (2) −0.006 (2)
C18 0.021 (2) 0.020 (2) 0.020 (3) −0.002 (2) 0.005 (2) −0.006 (2)
C19 0.010 (2) 0.023 (3) 0.015 (3) −0.002 (2) −0.0008 (19) −0.002 (2)
C20 0.053 (3) 0.024 (3) 0.029 (3) 0.004 (2) 0.020 (3) 0.003 (2)
C21 0.031 (3) 0.025 (3) 0.023 (3) −0.002 (2) 0.006 (2) −0.007 (2)
C22 0.022 (2) 0.023 (3) 0.018 (3) −0.004 (2) 0.005 (2) 0.000 (2)
C23 0.025 (2) 0.018 (3) 0.021 (3) −0.003 (2) 0.002 (2) −0.001 (2)
C24 0.045 (3) 0.028 (3) 0.031 (3) −0.006 (2) 0.019 (2) 0.003 (2)
C25 0.014 (2) 0.028 (3) 0.017 (3) 0.000 (2) 0.0006 (19) −0.005 (2)
C26 0.012 (2) 0.024 (3) 0.019 (3) −0.003 (2) 0.0029 (19) 0.002 (2)
C27 0.023 (2) 0.029 (3) 0.013 (3) −0.002 (2) 0.004 (2) −0.003 (2)
C28 0.021 (2) 0.026 (3) 0.019 (3) −0.003 (2) 0.005 (2) 0.000 (2)
C29 0.038 (3) 0.027 (3) 0.027 (3) −0.001 (2) 0.013 (2) −0.002 (2)
C30 0.041 (3) 0.026 (3) 0.040 (3) 0.004 (2) 0.020 (3) −0.004 (2)
C31 0.044 (3) 0.019 (3) 0.044 (4) 0.001 (2) 0.019 (3) 0.002 (2)
C32 0.032 (3) 0.031 (3) 0.033 (3) −0.006 (2) 0.016 (2) 0.001 (3)
C33 0.017 (2) 0.022 (3) 0.020 (3) −0.004 (2) 0.003 (2) −0.001 (2)
C34 0.018 (2) 0.034 (3) 0.017 (3) −0.005 (2) −0.001 (2) −0.001 (2)
C35 0.014 (2) 0.023 (3) 0.020 (3) 0.002 (2) 0.005 (2) 0.005 (2)
C36 0.014 (2) 0.026 (3) 0.024 (3) 0.003 (2) 0.006 (2) 0.001 (2)
C37 0.022 (2) 0.032 (3) 0.023 (3) 0.000 (2) 0.012 (2) −0.003 (2)
C38 0.016 (2) 0.025 (3) 0.020 (3) −0.002 (2) 0.000 (2) −0.003 (2)

Geometric parameters (Å, °)

O1—C2 1.223 (5) C13—H13 0.9500
O2—C4 1.373 (5) C14—C15 1.492 (6)
O2—C6 1.385 (4) C15—C16 1.453 (6)
O3—C8 1.230 (5) C16—C17 1.420 (6)
O4—C15 1.252 (5) C17—C18 1.396 (5)
O5—C17 1.354 (5) C18—C19 1.375 (5)
O5—H5 0.84 (1) C18—H18 0.9500
O6—C21 1.231 (5) C20—C21 1.501 (6)
O7—C25 1.385 (5) C20—H20A 0.9800
O7—C23 1.395 (5) C20—H20B 0.9800
O8—C27 1.224 (5) C20—H20C 0.9800
O9—C34 1.248 (5) C21—C22 1.464 (6)
O10—C36 1.352 (5) C22—C23 1.375 (6)
O10—H10 0.84 (1) C22—C38 1.456 (5)
C1—C2 1.502 (5) C23—C24 1.461 (5)
C1—H1A 0.9800 C24—H24A 0.9800
C1—H1B 0.9800 C24—H24B 0.9800
C1—H1C 0.9800 C24—H24C 0.9800
C2—C3 1.469 (6) C25—C26 1.368 (5)
C3—C4 1.361 (5) C25—C38 1.410 (5)
C3—C19 1.453 (5) C26—C35 1.424 (5)
C4—C5 1.493 (5) C26—C27 1.496 (5)
C5—H5A 0.9800 C27—C28 1.488 (6)
C5—H5B 0.9800 C28—C29 1.385 (5)
C5—H5C 0.9800 C28—C33 1.403 (5)
C6—C7 1.374 (5) C29—C30 1.388 (6)
C6—C19 1.407 (5) C29—H29 0.9500
C7—C16 1.413 (5) C30—C31 1.403 (6)
C7—C8 1.479 (6) C30—H30 0.9500
C8—C9 1.487 (6) C31—C32 1.383 (6)
C9—C10 1.390 (6) C31—H31 0.9500
C9—C14 1.393 (5) C32—C33 1.375 (6)
C10—C11 1.386 (6) C32—H32 0.9500
C10—H10A 0.9500 C33—C34 1.490 (5)
C11—C12 1.397 (6) C34—C35 1.447 (6)
C11—H11 0.9500 C35—C36 1.420 (5)
C12—C13 1.383 (6) C36—C37 1.401 (6)
C12—H12 0.9500 C37—C38 1.380 (5)
C13—C14 1.407 (5) C37—H37 0.9500
C4—O2—C6 106.6 (3) C18—C19—C3 134.6 (4)
C17—O5—H5 104 (3) C6—C19—C3 105.9 (4)
C25—O7—C23 106.9 (3) C21—C20—H20A 109.5
C36—O10—H10 104 (4) C21—C20—H20B 109.5
C2—C1—H1A 109.5 H20A—C20—H20B 109.5
C2—C1—H1B 109.5 C21—C20—H20C 109.5
H1A—C1—H1B 109.5 H20A—C20—H20C 109.5
C2—C1—H1C 109.5 H20B—C20—H20C 109.5
H1A—C1—H1C 109.5 O6—C21—C22 118.3 (4)
H1B—C1—H1C 109.5 O6—C21—C20 121.1 (4)
O1—C2—C3 119.6 (4) C22—C21—C20 120.6 (4)
O1—C2—C1 121.0 (4) C23—C22—C38 106.7 (4)
C3—C2—C1 119.4 (4) C23—C22—C21 128.6 (4)
C4—C3—C19 105.8 (4) C38—C22—C21 124.6 (4)
C4—C3—C2 130.3 (4) C22—C23—O7 110.7 (4)
C19—C3—C2 123.9 (4) C22—C23—C24 135.9 (4)
C3—C4—O2 112.2 (4) O7—C23—C24 113.4 (4)
C3—C4—C5 136.2 (4) C23—C24—H24A 109.5
O2—C4—C5 111.6 (4) C23—C24—H24B 109.5
C4—C5—H5A 109.5 H24A—C24—H24B 109.5
C4—C5—H5B 109.5 C23—C24—H24C 109.5
H5A—C5—H5B 109.5 H24A—C24—H24C 109.5
C4—C5—H5C 109.5 H24B—C24—H24C 109.5
H5A—C5—H5C 109.5 C26—C25—O7 126.3 (4)
H5B—C5—H5C 109.5 C26—C25—C38 123.7 (4)
C7—C6—O2 126.4 (4) O7—C25—C38 110.0 (4)
C7—C6—C19 124.1 (4) C25—C26—C35 117.0 (4)
O2—C6—C19 109.4 (4) C25—C26—C27 121.9 (4)
C6—C7—C16 116.5 (4) C35—C26—C27 121.2 (4)
C6—C7—C8 122.5 (4) O8—C27—C28 121.4 (4)
C16—C7—C8 121.1 (4) O8—C27—C26 121.3 (4)
O3—C8—C7 121.5 (4) C28—C27—C26 117.3 (4)
O3—C8—C9 120.7 (4) C29—C28—C33 119.9 (4)
C7—C8—C9 117.8 (4) C29—C28—C27 119.3 (4)
C10—C9—C14 119.9 (4) C33—C28—C27 120.8 (4)
C10—C9—C8 119.6 (4) C28—C29—C30 119.8 (4)
C14—C9—C8 120.5 (4) C28—C29—H29 120.1
C11—C10—C9 120.5 (4) C30—C29—H29 120.1
C11—C10—H10A 119.8 C29—C30—C31 120.0 (4)
C9—C10—H10A 119.8 C29—C30—H30 120.0
C10—C11—C12 119.8 (4) C31—C30—H30 120.0
C10—C11—H11 120.1 C32—C31—C30 120.0 (4)
C12—C11—H11 120.1 C32—C31—H31 120.0
C13—C12—C11 120.3 (4) C30—C31—H31 120.0
C13—C12—H12 119.9 C33—C32—C31 120.1 (4)
C11—C12—H12 119.9 C33—C32—H32 120.0
C12—C13—C14 119.8 (4) C31—C32—H32 120.0
C12—C13—H13 120.1 C32—C33—C28 120.3 (4)
C14—C13—H13 120.1 C32—C33—C34 118.9 (4)
C9—C14—C13 119.7 (4) C28—C33—C34 120.8 (4)
C9—C14—C15 120.6 (4) O9—C34—C35 121.3 (4)
C13—C14—C15 119.7 (4) O9—C34—C33 119.4 (4)
O4—C15—C16 121.6 (4) C35—C34—C33 119.3 (4)
O4—C15—C14 119.3 (4) C26—C35—C36 119.6 (4)
C16—C15—C14 119.0 (4) C26—C35—C34 120.3 (4)
C7—C16—C17 119.9 (4) C36—C35—C34 120.0 (4)
C7—C16—C15 120.1 (4) O10—C36—C37 116.9 (4)
C17—C16—C15 120.0 (4) O10—C36—C35 121.5 (4)
O5—C17—C18 115.6 (4) C37—C36—C35 121.6 (4)
O5—C17—C16 122.8 (4) C38—C37—C36 118.2 (4)
C18—C17—C16 121.6 (4) C38—C37—H37 120.9
C19—C18—C17 118.5 (4) C36—C37—H37 120.9
C19—C18—H18 120.8 C37—C38—C25 119.9 (4)
C17—C18—H18 120.8 C37—C38—C22 134.4 (4)
C18—C19—C6 119.5 (4) C25—C38—C22 105.7 (3)
O1—C2—C3—C4 173.4 (4) O6—C21—C22—C23 −176.5 (4)
C1—C2—C3—C4 −8.3 (7) C20—C21—C22—C23 2.5 (7)
O1—C2—C3—C19 −4.8 (6) O6—C21—C22—C38 0.8 (7)
C1—C2—C3—C19 173.4 (4) C20—C21—C22—C38 179.8 (4)
C19—C3—C4—O2 −1.9 (5) C38—C22—C23—O7 −1.3 (5)
C2—C3—C4—O2 179.6 (4) C21—C22—C23—O7 176.4 (4)
C19—C3—C4—C5 177.4 (5) C38—C22—C23—C24 178.7 (5)
C2—C3—C4—C5 −1.1 (8) C21—C22—C23—C24 −3.6 (9)
C6—O2—C4—C3 1.0 (4) C25—O7—C23—C22 0.5 (5)
C6—O2—C4—C5 −178.5 (3) C25—O7—C23—C24 −179.5 (3)
C4—O2—C6—C7 179.6 (4) C23—O7—C25—C26 178.8 (4)
C4—O2—C6—C19 0.4 (4) C23—O7—C25—C38 0.6 (4)
O2—C6—C7—C16 −178.5 (4) O7—C25—C26—C35 −176.4 (4)
C19—C6—C7—C16 0.5 (6) C38—C25—C26—C35 1.7 (6)
O2—C6—C7—C8 1.4 (7) O7—C25—C26—C27 2.4 (6)
C19—C6—C7—C8 −179.6 (4) C38—C25—C26—C27 −179.5 (4)
C6—C7—C8—O3 8.5 (6) C25—C26—C27—O8 4.7 (6)
C16—C7—C8—O3 −171.5 (4) C35—C26—C27—O8 −176.5 (4)
C6—C7—C8—C9 −171.4 (4) C25—C26—C27—C28 −175.1 (4)
C16—C7—C8—C9 8.5 (6) C35—C26—C27—C28 3.7 (6)
O3—C8—C9—C10 −8.8 (6) O8—C27—C28—C29 −3.1 (6)
C7—C8—C9—C10 171.2 (4) C26—C27—C28—C29 176.7 (4)
O3—C8—C9—C14 173.8 (4) O8—C27—C28—C33 176.1 (4)
C7—C8—C9—C14 −6.3 (6) C26—C27—C28—C33 −4.1 (6)
C14—C9—C10—C11 0.9 (6) C33—C28—C29—C30 1.7 (6)
C8—C9—C10—C11 −176.5 (4) C27—C28—C29—C30 −179.1 (4)
C9—C10—C11—C12 −0.5 (7) C28—C29—C30—C31 −2.0 (7)
C10—C11—C12—C13 −1.0 (7) C29—C30—C31—C32 1.6 (7)
C11—C12—C13—C14 2.1 (7) C30—C31—C32—C33 −0.9 (7)
C10—C9—C14—C13 0.2 (6) C31—C32—C33—C28 0.6 (7)
C8—C9—C14—C13 177.6 (4) C31—C32—C33—C34 179.7 (4)
C10—C9—C14—C15 −179.3 (4) C29—C28—C33—C32 −1.0 (6)
C8—C9—C14—C15 −1.8 (6) C27—C28—C33—C32 179.8 (4)
C12—C13—C14—C9 −1.7 (6) C29—C28—C33—C34 179.9 (4)
C12—C13—C14—C15 177.7 (4) C27—C28—C33—C34 0.7 (6)
C9—C14—C15—O4 −173.1 (4) C32—C33—C34—O9 2.9 (6)
C13—C14—C15—O4 7.5 (6) C28—C33—C34—O9 −178.1 (4)
C9—C14—C15—C16 8.0 (6) C32—C33—C34—C35 −175.8 (4)
C13—C14—C15—C16 −171.4 (4) C28—C33—C34—C35 3.3 (6)
C6—C7—C16—C17 −1.8 (6) C25—C26—C35—C36 −1.0 (6)
C8—C7—C16—C17 178.3 (4) C27—C26—C35—C36 −179.8 (4)
C6—C7—C16—C15 177.5 (4) C25—C26—C35—C34 179.0 (4)
C8—C7—C16—C15 −2.4 (6) C27—C26—C35—C34 0.2 (6)
O4—C15—C16—C7 175.3 (4) O9—C34—C35—C26 177.7 (4)
C14—C15—C16—C7 −5.8 (6) C33—C34—C35—C26 −3.7 (6)
O4—C15—C16—C17 −5.4 (7) O9—C34—C35—C36 −2.3 (6)
C14—C15—C16—C17 173.5 (4) C33—C34—C35—C36 176.3 (4)
C7—C16—C17—O5 −178.6 (4) C26—C35—C36—O10 178.0 (4)
C15—C16—C17—O5 2.1 (6) C34—C35—C36—O10 −2.0 (6)
C7—C16—C17—C18 1.9 (6) C26—C35—C36—C37 0.0 (6)
C15—C16—C17—C18 −177.5 (4) C34—C35—C36—C37 180.0 (4)
O5—C17—C18—C19 180.0 (3) O10—C36—C37—C38 −177.7 (4)
C16—C17—C18—C19 −0.5 (6) C35—C36—C37—C38 0.3 (6)
C17—C18—C19—C6 −0.9 (6) C36—C37—C38—C25 0.3 (6)
C17—C18—C19—C3 −178.7 (4) C36—C37—C38—C22 177.9 (4)
C7—C6—C19—C18 0.9 (6) C26—C25—C38—C37 −1.3 (6)
O2—C6—C19—C18 −179.9 (3) O7—C25—C38—C37 177.0 (4)
C7—C6—C19—C3 179.3 (4) C26—C25—C38—C22 −179.6 (4)
O2—C6—C19—C3 −1.5 (5) O7—C25—C38—C22 −1.3 (4)
C4—C3—C19—C18 −179.9 (4) C23—C22—C38—C37 −176.4 (5)
C2—C3—C19—C18 −1.3 (7) C21—C22—C38—C37 5.9 (7)
C4—C3—C19—C6 2.1 (5) C23—C22—C38—C25 1.5 (4)
C2—C3—C19—C6 −179.3 (4) C21—C22—C38—C25 −176.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···O4 0.84 (1) 1.82 (2) 2.596 (4) 153 (4)
O10—H10···O9 0.84 (1) 1.77 (3) 2.552 (4) 153 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5188).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Boddy, I. K., Cambie, R. C., Rutledge, P. S. & Woodgate, P. D. (1986). Aust. J. Chem. 39, 2075–2088.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013389/xu5188sup1.cif

e-67-o1144-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013389/xu5188Isup2.hkl

e-67-o1144-Isup2.hkl (240.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES