Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):m599–m600. doi: 10.1107/S1600536811013559

Bis(μ-hexa­deca­noato-κ2 O:O)bis­[(2,2′-bipyridine-κ2 N,N′)(hexa­deca­noato-κO)copper(II)] methanol disolvate

Ahmad Nazeer Che Mat a, Norbani Abdullah a,*, Hamid Khaledi a,*, Jia Ti Tee a
PMCID: PMC3089362  PMID: 21754319

Abstract

The asymmetric unit of the title compound, [Cu2(C16H31O2)4(C10H8N2)2]·2CH3OH, contains one half-mol­ecule of the metal complex solvated by a methanol mol­ecule. In the complex, two of the metal atoms are doubly bridged by two monodentate bridging hexa­deca­noate ligands around a center of inversion. The square-pyramidal geometry around each CuII ion is completed by a terminal hexa­deca­noate O atom and two N atoms from a 2,2′-bipyridine ligand. The alkyl chains of the carboxyl­ate ligands are arranged in a parallel manner with an all-trans conformation. In the crystal, a π–π inter­action formed by the bipyridine rings [centroid–centroid separation = 3.7723 (17) Å] and inter­molecular C—H⋯O hydrogen bonds link the complex mol­ecules into infinite chains along the b axis. An O—H⋯O interaction between the methanol solvate and one of the carboxylate O atoms is also observed.

Related literature

For background to metallomesogens, see: Giroud-Godquin (1998). For the structures of similar copper(II) complexes, see: Antolini et al. (1985); Zhang et al. (2006). For a description of the geometry of complexes with a five-coordinate metal atom, see: Addison et al. (1984).graphic file with name e-67-0m599-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C16H31O2)4(C10H8N2)2]·2CH4O

  • M r = 1525.16

  • Triclinic, Inline graphic

  • a = 9.6064 (3) Å

  • b = 9.7506 (3) Å

  • c = 24.0234 (8) Å

  • α = 92.559 (2)°

  • β = 98.681 (2)°

  • γ = 95.516 (2)°

  • V = 2210.14 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.40 × 0.27 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.814, T max = 0.953

  • 13457 measured reflections

  • 8088 independent reflections

  • 5498 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.127

  • S = 0.99

  • 8088 reflections

  • 466 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013559/om2420sup1.cif

e-67-0m599-sup1.cif (31.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013559/om2420Isup2.hkl

e-67-0m599-Isup2.hkl (395.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O1i 0.93 2.50 3.093 (3) 122
C33—H33⋯O3i 0.93 2.57 3.071 (3) 114
C35—H35⋯O2ii 0.93 2.42 3.129 (3) 134
C39—H39⋯O4iii 0.93 2.41 3.258 (4) 152
C41—H41⋯O5iv 0.93 2.46 3.153 (4) 131
C42—H42⋯O1 0.93 2.59 3.096 (3) 115
O5—H5⋯O2 0.86 (2) 1.89 (3) 2.732 (4) 166 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Malaysian government for the Fundamental Research Grant Scheme (FRGS FP046/2008, FP017/2009), and the University of Malaya Grants (RG039/09SUS, PS339/2009 C).

supplementary crystallographic information

Comment

Metallomesogens are metal containing liquid crystals. Active research in this field started around 30 years ago (Giroud-Godquin, 1998), and these materials have found useful applications as ordered solvents, catalysts, and templates for synthesis, optical and ferroelectric systems, electronic or ionic conductors, and membranes. However, most metallomesogens have high melting points (greater than 523 K), high viscosity, and narrow isotropic range. Our research group is focused on functional low-temperature and thermally stable metallomesogens for spintronic, electronic, photonic and catalytic applications. To achieve this, we applied the concept of symmetry reduction and use of ligands with long (linear or branched) alkyl chains. Herein, we report the crystal structure of one such complex.

The title compound is a centrosymmetric dinuclear copper(II) complex in which the metal ions are five-coordinate in a square-pyramidal geometry with the τ value (Addison et al., 1984) of 0.016. The coordination geometry around each metal center is defined by two nitrogen atoms from a 2,2'-bipyridine and two O atoms from two monodentate hexadecanoato ligands at the basal positions. The square-pyramidal coordination of Cu(II) is completed by bonding to the bridging hexadecanoate O atom in the axial direction with Cu—O distance of 2.349 (2) Å. Within this double bridged dimer, the Cu···Cu distance [3.3740 (6) Å] is comparable to those observed in similar structures (Antolini et al., 1985; Zhang et al., 2006). The alkyl chains of the carboxylate ligands are arranged in a parallel manner with an all trans conformation. The methanol solvent molecule is a hydrogen bond donor to the carboxylate O2 atom. In the crystal, intermolecular C—H···O interactions (Table 1) connect the molecules into infinite chains along the b axis. The one-dimensional link is supplemented by a π-π stacking interaction between the anti-parallely arranged bipyridine rings of the adjacent molecules, the pyridyl rings centroid-centroid separation being 3.7723 (17) Å. Intramolecular C—H···O interactions are also observed.

Experimental

An aqueous solution of copper(II)nitrate trihydrate (5.7 g, 23.4 mmol) was added portionwise to a hot ethanolic solution (150 ml) of hexadecanoic acid (6 g, 23.4 mmol) and p-aminobenzoic acid (3.2 g, 23.6 mmol). The green solution formed was allowed to cool to room temperature, and then an excess amount of ammonia (30%) was added. The purple solution formed was stirred at room temperature overnight, and then heated gently to remove excess ammonia and get the pale blue precipitate of [Cu2(p-H2NC6H4COO)2(CH3(CH2)14COO)2]. 2,2'-Bipyridine (0.19 g, 1.2 mmol) was added to a suspension of [Cu2(p-H2NC6H4COO)2(CH3(CH2)14COO)2] (1 g, 1.1 mmol) in a 1:2 mixture of methanol-ethanol (60 ml). The mixture was heated for 30 minutes and the black precipitate was filtered off. The small blue crystals obtained from the filtrate, on standing overnight, were recrystallized from methanol-THF (1:1), to give the dark blue crystals of the title compound after two weeks.

Refinement

The C-bound hydrogen atoms were placed at calculated positions (C–H 0.93–0.97 Å), and were treated as riding on their parent carbon atoms. The oxygen-bound H atom was located in a difference Fourier map and refined with distance restraint of O–H 0.82±0.02 Å. For hydrogen atoms Uiso(H) were set to 1.2–1.5 times Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of the title compound at the 30% probability level. Atom labels for consecutively numbered rings and alkyl chains, as well as C-bound hydrogen atoms have been omitted for clarity. Symmetry code: ' = -x+2, –y+1, -z+1.

Fig. 2.

Fig. 2.

Packing view looking down the crystallographic a axis.

Crystal data

[Cu2(C16H31O2)4(C10H8N2)2]·2CH4O Z = 1
Mr = 1525.16 F(000) = 830
Triclinic, P1 Dx = 1.146 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6064 (3) Å Cell parameters from 2321 reflections
b = 9.7506 (3) Å θ = 2.5–21.5°
c = 24.0234 (8) Å µ = 0.54 mm1
α = 92.559 (2)° T = 296 K
β = 98.681 (2)° Block, blue
γ = 95.516 (2)° 0.40 × 0.27 × 0.09 mm
V = 2210.14 (12) Å3

Data collection

Bruker APEXII CCD diffractometer 8088 independent reflections
Radiation source: fine-focus sealed tube 5498 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.814, Tmax = 0.953 k = −11→11
13457 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.061P)2] where P = (Fo2 + 2Fc2)/3
8088 reflections (Δ/σ)max = 0.011
466 parameters Δρmax = 0.31 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.91189 (3) 0.34121 (3) 0.498126 (15) 0.03823 (13)
O1 0.7446 (2) 0.42240 (19) 0.51491 (9) 0.0475 (5)
O2 0.6702 (2) 0.2457 (2) 0.56137 (10) 0.0619 (6)
O3 0.96731 (19) 0.53048 (18) 0.44537 (8) 0.0426 (5)
O4 0.9778 (2) 0.7002 (2) 0.38786 (10) 0.0602 (6)
N1 1.0740 (2) 0.2359 (2) 0.48224 (10) 0.0378 (6)
N2 0.8058 (2) 0.1916 (2) 0.44362 (10) 0.0394 (6)
C1 0.6751 (3) 0.3687 (3) 0.55073 (14) 0.0452 (8)
C2 0.5984 (3) 0.4670 (3) 0.58304 (14) 0.0542 (9)
H2A 0.5558 0.5314 0.5577 0.065*
H2B 0.5236 0.4154 0.5987 0.065*
C3 0.7025 (3) 0.5457 (3) 0.63028 (14) 0.0556 (9)
H3A 0.7496 0.4796 0.6534 0.067*
H3B 0.7741 0.5998 0.6138 0.067*
C4 0.6373 (3) 0.6407 (3) 0.66775 (14) 0.0606 (9)
H4A 0.5932 0.7091 0.6450 0.073*
H4B 0.5635 0.5874 0.6834 0.073*
C5 0.7410 (4) 0.7138 (4) 0.71538 (15) 0.0671 (10)
H5A 0.8128 0.7689 0.6993 0.081*
H5B 0.7878 0.6448 0.7369 0.081*
C6 0.6812 (4) 0.8064 (4) 0.75564 (15) 0.0641 (10)
H6A 0.6378 0.8781 0.7347 0.077*
H6B 0.6072 0.7525 0.7709 0.077*
C7 0.7877 (4) 0.8737 (4) 0.80388 (15) 0.0657 (10)
H7A 0.8621 0.9264 0.7884 0.079*
H7B 0.8304 0.8017 0.8249 0.079*
C8 0.7305 (4) 0.9680 (4) 0.84449 (15) 0.0666 (10)
H8A 0.6861 1.0392 0.8235 0.080*
H8B 0.6576 0.9150 0.8607 0.080*
C9 0.8383 (4) 1.0361 (4) 0.89138 (15) 0.0695 (11)
H9A 0.9104 1.0896 0.8749 0.083*
H9B 0.8837 0.9645 0.9117 0.083*
C10 0.7853 (4) 1.1292 (4) 0.93316 (15) 0.0681 (10)
H10A 0.7387 1.2000 0.9127 0.082*
H10B 0.7140 1.0753 0.9500 0.082*
C11 0.8932 (4) 1.1989 (4) 0.97973 (16) 0.0720 (11)
H11A 0.9389 1.1283 1.0006 0.086*
H11B 0.9650 1.2522 0.9630 0.086*
C12 0.8389 (4) 1.2925 (4) 1.02059 (15) 0.0724 (11)
H12A 0.7682 1.2386 1.0377 0.087*
H12B 0.7914 1.3617 0.9995 0.087*
C13 0.9456 (4) 1.3652 (4) 1.06694 (16) 0.0772 (11)
H13A 0.9927 1.2960 1.0882 0.093*
H13B 1.0167 1.4188 1.0499 0.093*
C14 0.8910 (4) 1.4587 (4) 1.10716 (16) 0.0781 (12)
H14A 0.8196 1.4050 1.1240 0.094*
H14B 0.8439 1.5277 1.0857 0.094*
C15 0.9958 (5) 1.5325 (5) 1.15394 (19) 0.0965 (14)
H15A 1.0422 1.4641 1.1760 0.116*
H15B 1.0678 1.5861 1.1374 0.116*
C16 0.9367 (5) 1.6263 (5) 1.19290 (19) 0.1150 (18)
H16A 0.8961 1.6985 1.1722 0.172*
H16B 1.0110 1.6659 1.2221 0.172*
H16C 0.8649 1.5748 1.2095 0.172*
C17 0.9304 (3) 0.5849 (3) 0.39814 (13) 0.0421 (7)
C18 0.8202 (3) 0.4979 (3) 0.35562 (13) 0.0512 (8)
H18A 0.7488 0.4538 0.3754 0.061*
H18B 0.7739 0.5582 0.3293 0.061*
C19 0.8802 (3) 0.3880 (3) 0.32266 (13) 0.0482 (8)
H19A 0.9534 0.4315 0.3036 0.058*
H19B 0.9238 0.3257 0.3487 0.058*
C20 0.7695 (3) 0.3054 (3) 0.27940 (14) 0.0565 (9)
H20A 0.6993 0.2584 0.2990 0.068*
H20B 0.7219 0.3691 0.2551 0.068*
C21 0.8245 (3) 0.1999 (3) 0.24292 (14) 0.0590 (9)
H21A 0.8656 0.1318 0.2668 0.071*
H21B 0.8994 0.2455 0.2253 0.071*
C22 0.7130 (4) 0.1261 (4) 0.19725 (15) 0.0657 (10)
H22A 0.6424 0.0743 0.2151 0.079*
H22B 0.6660 0.1948 0.1756 0.079*
C23 0.7670 (4) 0.0293 (4) 0.15724 (15) 0.0678 (10)
H23A 0.8096 −0.0422 0.1786 0.081*
H23B 0.8410 0.0800 0.1408 0.081*
C24 0.6571 (4) −0.0390 (4) 0.10995 (15) 0.0671 (10)
H24A 0.5851 −0.0930 0.1264 0.081*
H24B 0.6117 0.0324 0.0895 0.081*
C25 0.7126 (4) −0.1317 (4) 0.06851 (15) 0.0679 (10)
H25A 0.7834 −0.0772 0.0517 0.081*
H25B 0.7598 −0.2019 0.0891 0.081*
C26 0.6041 (4) −0.2025 (4) 0.02180 (15) 0.0679 (10)
H26A 0.5341 −0.2584 0.0385 0.081*
H26B 0.5558 −0.1325 0.0015 0.081*
C27 0.6611 (4) −0.2929 (4) −0.01978 (15) 0.0679 (10)
H27A 0.7115 −0.3611 0.0008 0.082*
H27B 0.7295 −0.2363 −0.0370 0.082*
C28 0.5540 (4) −0.3672 (4) −0.06597 (15) 0.0697 (10)
H28A 0.4855 −0.4239 −0.0488 0.084*
H28B 0.5037 −0.2991 −0.0867 0.084*
C29 0.6122 (4) −0.4565 (4) −0.10674 (15) 0.0720 (11)
H29A 0.6636 −0.5234 −0.0857 0.086*
H29B 0.6802 −0.3992 −0.1239 0.086*
C30 0.5078 (4) −0.5336 (4) −0.15314 (16) 0.0751 (11)
H30A 0.4400 −0.5910 −0.1359 0.090*
H30B 0.4561 −0.4667 −0.1741 0.090*
C31 0.5658 (5) −0.6224 (4) −0.19391 (17) 0.0912 (14)
H31A 0.6188 −0.6884 −0.1730 0.109*
H31B 0.6322 −0.5647 −0.2117 0.109*
C32 0.4606 (5) −0.7003 (5) −0.23923 (18) 0.1087 (17)
H32A 0.4007 −0.7659 −0.2226 0.163*
H32B 0.5096 −0.7480 −0.2649 0.163*
H32C 0.4039 −0.6370 −0.2593 0.163*
C33 1.2115 (3) 0.2658 (3) 0.50422 (13) 0.0452 (8)
H33 1.2389 0.3473 0.5264 0.054*
C34 1.3123 (3) 0.1815 (3) 0.49531 (14) 0.0481 (8)
H34 1.4065 0.2064 0.5108 0.058*
C35 1.2743 (3) 0.0604 (3) 0.46349 (14) 0.0495 (8)
H35 1.3415 0.0007 0.4579 0.059*
C36 1.1338 (3) 0.0283 (3) 0.43977 (13) 0.0462 (8)
H36 1.1054 −0.0529 0.4175 0.055*
C37 1.0366 (3) 0.1174 (3) 0.44938 (12) 0.0374 (7)
C38 0.8836 (3) 0.0946 (3) 0.42662 (12) 0.0367 (7)
C39 0.8228 (3) −0.0172 (3) 0.39013 (13) 0.0497 (8)
H39 0.8778 −0.0836 0.3787 0.060*
C40 0.6794 (4) −0.0272 (3) 0.37133 (14) 0.0572 (9)
H40 0.6364 −0.1009 0.3468 0.069*
C41 0.5997 (3) 0.0712 (3) 0.38858 (14) 0.0539 (9)
H41 0.5027 0.0649 0.3761 0.065*
C42 0.6662 (3) 0.1794 (3) 0.42469 (13) 0.0456 (8)
H42 0.6124 0.2464 0.4364 0.055*
O5 0.6666 (4) 0.1341 (4) 0.66351 (13) 0.1153 (12)
H5 0.656 (7) 0.175 (5) 0.6327 (15) 0.173*
C43 0.7910 (5) 0.1699 (5) 0.6985 (2) 0.1218 (19)
H43A 0.8472 0.0934 0.7000 0.183*
H43B 0.7724 0.1940 0.7356 0.183*
H43C 0.8415 0.2475 0.6845 0.183*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0363 (2) 0.0308 (2) 0.0444 (2) 0.00502 (14) −0.00033 (16) −0.01253 (15)
O1 0.0442 (11) 0.0392 (11) 0.0593 (15) 0.0086 (9) 0.0092 (11) −0.0083 (11)
O2 0.0750 (15) 0.0396 (13) 0.0710 (17) 0.0061 (11) 0.0141 (13) −0.0066 (11)
O3 0.0505 (12) 0.0330 (10) 0.0406 (12) 0.0066 (9) −0.0032 (10) −0.0084 (9)
O4 0.0753 (15) 0.0399 (12) 0.0614 (15) 0.0001 (12) 0.0018 (12) 0.0020 (11)
N1 0.0379 (12) 0.0287 (12) 0.0446 (15) 0.0048 (10) 0.0013 (11) −0.0066 (11)
N2 0.0396 (13) 0.0326 (12) 0.0444 (15) 0.0048 (10) 0.0029 (12) −0.0072 (11)
C1 0.0363 (16) 0.0461 (19) 0.049 (2) 0.0046 (14) −0.0028 (15) −0.0146 (16)
C2 0.0430 (17) 0.0542 (19) 0.063 (2) 0.0080 (15) 0.0056 (16) −0.0197 (17)
C3 0.0507 (18) 0.0547 (19) 0.057 (2) 0.0079 (16) 0.0008 (17) −0.0182 (17)
C4 0.059 (2) 0.064 (2) 0.055 (2) 0.0191 (17) −0.0021 (17) −0.0208 (18)
C5 0.066 (2) 0.070 (2) 0.063 (2) 0.0134 (19) 0.0036 (19) −0.0224 (19)
C6 0.063 (2) 0.069 (2) 0.058 (2) 0.0150 (18) 0.0021 (18) −0.0217 (18)
C7 0.068 (2) 0.068 (2) 0.060 (2) 0.0147 (19) 0.0034 (19) −0.0177 (19)
C8 0.069 (2) 0.073 (2) 0.055 (2) 0.0106 (19) 0.0043 (19) −0.0191 (19)
C9 0.068 (2) 0.075 (2) 0.062 (2) 0.009 (2) 0.004 (2) −0.021 (2)
C10 0.070 (2) 0.075 (2) 0.056 (2) 0.008 (2) 0.0067 (19) −0.0178 (19)
C11 0.067 (2) 0.078 (3) 0.065 (3) 0.003 (2) 0.001 (2) −0.021 (2)
C12 0.076 (2) 0.075 (2) 0.061 (2) 0.010 (2) 0.000 (2) −0.024 (2)
C13 0.077 (3) 0.079 (3) 0.069 (3) 0.003 (2) 0.001 (2) −0.020 (2)
C14 0.081 (3) 0.082 (3) 0.063 (3) 0.008 (2) −0.007 (2) −0.019 (2)
C15 0.092 (3) 0.106 (3) 0.079 (3) −0.002 (3) −0.006 (3) −0.028 (3)
C16 0.140 (4) 0.109 (4) 0.084 (3) 0.004 (3) −0.004 (3) −0.039 (3)
C17 0.0434 (16) 0.0392 (17) 0.0420 (19) 0.0115 (14) −0.0002 (15) −0.0090 (15)
C18 0.0495 (18) 0.0500 (18) 0.049 (2) 0.0106 (15) −0.0102 (15) −0.0089 (15)
C19 0.0520 (18) 0.0460 (17) 0.0429 (19) 0.0037 (15) 0.0000 (15) −0.0081 (15)
C20 0.059 (2) 0.0553 (19) 0.049 (2) −0.0006 (16) −0.0012 (17) −0.0160 (16)
C21 0.0565 (19) 0.061 (2) 0.053 (2) 0.0002 (17) −0.0026 (17) −0.0195 (17)
C22 0.064 (2) 0.065 (2) 0.062 (2) −0.0002 (18) 0.0034 (19) −0.0245 (19)
C23 0.064 (2) 0.072 (2) 0.060 (2) 0.0040 (19) −0.0010 (19) −0.0249 (19)
C24 0.066 (2) 0.068 (2) 0.061 (2) −0.0003 (19) 0.0018 (19) −0.0249 (19)
C25 0.068 (2) 0.071 (2) 0.059 (2) 0.0068 (19) −0.0021 (19) −0.0239 (19)
C26 0.070 (2) 0.070 (2) 0.057 (2) 0.0007 (19) 0.0009 (19) −0.0244 (19)
C27 0.071 (2) 0.071 (2) 0.056 (2) 0.0050 (19) 0.0004 (19) −0.0215 (19)
C28 0.074 (2) 0.071 (2) 0.057 (2) 0.002 (2) 0.0013 (19) −0.0211 (19)
C29 0.075 (2) 0.075 (2) 0.059 (2) 0.010 (2) −0.005 (2) −0.023 (2)
C30 0.082 (3) 0.078 (3) 0.058 (2) 0.005 (2) −0.004 (2) −0.020 (2)
C31 0.102 (3) 0.094 (3) 0.069 (3) 0.016 (3) −0.006 (2) −0.036 (2)
C32 0.115 (4) 0.118 (4) 0.080 (3) 0.013 (3) −0.015 (3) −0.047 (3)
C33 0.0416 (16) 0.0331 (15) 0.058 (2) 0.0040 (13) 0.0018 (15) −0.0085 (14)
C34 0.0368 (16) 0.0427 (17) 0.064 (2) 0.0066 (14) 0.0046 (16) −0.0007 (16)
C35 0.0483 (18) 0.0391 (17) 0.065 (2) 0.0141 (14) 0.0161 (16) −0.0040 (16)
C36 0.0509 (18) 0.0346 (16) 0.053 (2) 0.0048 (14) 0.0114 (16) −0.0117 (14)
C37 0.0434 (16) 0.0287 (14) 0.0398 (17) 0.0027 (12) 0.0075 (14) −0.0034 (13)
C38 0.0441 (16) 0.0300 (14) 0.0345 (16) 0.0012 (12) 0.0036 (13) −0.0024 (12)
C39 0.0553 (19) 0.0392 (17) 0.050 (2) 0.0023 (15) 0.0021 (16) −0.0167 (15)
C40 0.065 (2) 0.0416 (18) 0.055 (2) −0.0066 (16) −0.0075 (17) −0.0188 (16)
C41 0.0457 (17) 0.0539 (19) 0.053 (2) −0.0041 (16) −0.0114 (16) −0.0064 (16)
C42 0.0405 (16) 0.0432 (17) 0.051 (2) 0.0041 (14) 0.0019 (15) −0.0063 (15)
O5 0.116 (2) 0.135 (3) 0.078 (2) −0.052 (2) 0.003 (2) 0.003 (2)
C43 0.120 (4) 0.148 (5) 0.085 (4) −0.033 (4) 0.003 (3) 0.012 (3)

Geometric parameters (Å, °)

Cu1—O1 1.945 (2) C19—C20 1.512 (4)
Cu1—O3i 1.9617 (17) C19—H19A 0.9700
Cu1—N2 2.005 (2) C19—H19B 0.9700
Cu1—N1 2.019 (2) C20—C21 1.507 (4)
Cu1—O3 2.349 (2) C20—H20A 0.9700
O1—C1 1.268 (4) C20—H20B 0.9700
O2—C1 1.235 (4) C21—C22 1.515 (4)
O3—C17 1.289 (3) C21—H21A 0.9700
O3—Cu1i 1.9617 (17) C21—H21B 0.9700
O4—C17 1.222 (3) C22—C23 1.499 (4)
N1—C33 1.346 (3) C22—H22A 0.9700
N1—C37 1.357 (3) C22—H22B 0.9700
N2—C42 1.342 (3) C23—C24 1.511 (4)
N2—C38 1.347 (3) C23—H23A 0.9700
C1—C2 1.519 (4) C23—H23B 0.9700
C2—C3 1.519 (4) C24—C25 1.505 (4)
C2—H2A 0.9700 C24—H24A 0.9700
C2—H2B 0.9700 C24—H24B 0.9700
C3—C4 1.506 (4) C25—C26 1.504 (4)
C3—H3A 0.9700 C25—H25A 0.9700
C3—H3B 0.9700 C25—H25B 0.9700
C4—C5 1.502 (4) C26—C27 1.502 (4)
C4—H4A 0.9700 C26—H26A 0.9700
C4—H4B 0.9700 C26—H26B 0.9700
C5—C6 1.507 (4) C27—C28 1.502 (4)
C5—H5A 0.9700 C27—H27A 0.9700
C5—H5B 0.9700 C27—H27B 0.9700
C6—C7 1.505 (4) C28—C29 1.487 (5)
C6—H6A 0.9700 C28—H28A 0.9700
C6—H6B 0.9700 C28—H28B 0.9700
C7—C8 1.510 (4) C29—C30 1.502 (4)
C7—H7A 0.9700 C29—H29A 0.9700
C7—H7B 0.9700 C29—H29B 0.9700
C8—C9 1.493 (4) C30—C31 1.484 (5)
C8—H8A 0.9700 C30—H30A 0.9700
C8—H8B 0.9700 C30—H30B 0.9700
C9—C10 1.501 (4) C31—C32 1.493 (5)
C9—H9A 0.9700 C31—H31A 0.9700
C9—H9B 0.9700 C31—H31B 0.9700
C10—C11 1.495 (4) C32—H32A 0.9600
C10—H10A 0.9700 C32—H32B 0.9600
C10—H10B 0.9700 C32—H32C 0.9600
C11—C12 1.494 (4) C33—C34 1.363 (4)
C11—H11A 0.9700 C33—H33 0.9300
C11—H11B 0.9700 C34—C35 1.365 (4)
C12—C13 1.496 (4) C34—H34 0.9300
C12—H12A 0.9700 C35—C36 1.384 (4)
C12—H12B 0.9700 C35—H35 0.9300
C13—C14 1.486 (5) C36—C37 1.372 (4)
C13—H13A 0.9700 C36—H36 0.9300
C13—H13B 0.9700 C37—C38 1.481 (4)
C14—C15 1.497 (5) C38—C39 1.391 (3)
C14—H14A 0.9700 C39—C40 1.377 (4)
C14—H14B 0.9700 C39—H39 0.9300
C15—C16 1.490 (5) C40—C41 1.371 (4)
C15—H15A 0.9700 C40—H40 0.9300
C15—H15B 0.9700 C41—C42 1.377 (4)
C16—H16A 0.9600 C41—H41 0.9300
C16—H16B 0.9600 C42—H42 0.9300
C16—H16C 0.9600 O5—C43 1.359 (5)
C17—C18 1.519 (4) O5—H5 0.86 (2)
C18—C19 1.513 (4) C43—H43A 0.9600
C18—H18A 0.9700 C43—H43B 0.9600
C18—H18B 0.9700 C43—H43C 0.9600
O1—Cu1—O3i 90.51 (8) C20—C19—C18 113.0 (2)
O1—Cu1—N2 95.52 (9) C20—C19—H19A 109.0
O3i—Cu1—N2 172.47 (8) C18—C19—H19A 109.0
O1—Cu1—N1 173.45 (9) C20—C19—H19B 109.0
O3i—Cu1—N1 93.43 (8) C18—C19—H19B 109.0
N2—Cu1—N1 80.17 (9) H19A—C19—H19B 107.8
O1—Cu1—O3 89.86 (8) C21—C20—C19 115.3 (3)
O3i—Cu1—O3 77.36 (8) C21—C20—H20A 108.4
N2—Cu1—O3 107.08 (8) C19—C20—H20A 108.4
N1—Cu1—O3 96.10 (8) C21—C20—H20B 108.4
C1—O1—Cu1 119.20 (19) C19—C20—H20B 108.4
C17—O3—Cu1i 113.34 (17) H20A—C20—H20B 107.5
C17—O3—Cu1 142.73 (18) C20—C21—C22 114.1 (3)
Cu1i—O3—Cu1 102.64 (8) C20—C21—H21A 108.7
C33—N1—C37 117.7 (2) C22—C21—H21A 108.7
C33—N1—Cu1 126.72 (18) C20—C21—H21B 108.7
C37—N1—Cu1 115.38 (17) C22—C21—H21B 108.7
C42—N2—C38 118.8 (2) H21A—C21—H21B 107.6
C42—N2—Cu1 125.58 (19) C23—C22—C21 115.3 (3)
C38—N2—Cu1 115.63 (17) C23—C22—H22A 108.4
O2—C1—O1 124.4 (3) C21—C22—H22A 108.4
O2—C1—C2 119.8 (3) C23—C22—H22B 108.4
O1—C1—C2 115.8 (3) C21—C22—H22B 108.4
C3—C2—C1 109.7 (2) H22A—C22—H22B 107.5
C3—C2—H2A 109.7 C22—C23—C24 115.4 (3)
C1—C2—H2A 109.7 C22—C23—H23A 108.4
C3—C2—H2B 109.7 C24—C23—H23A 108.4
C1—C2—H2B 109.7 C22—C23—H23B 108.4
H2A—C2—H2B 108.2 C24—C23—H23B 108.4
C4—C3—C2 114.7 (3) H23A—C23—H23B 107.5
C4—C3—H3A 108.6 C25—C24—C23 115.2 (3)
C2—C3—H3A 108.6 C25—C24—H24A 108.5
C4—C3—H3B 108.6 C23—C24—H24A 108.5
C2—C3—H3B 108.6 C25—C24—H24B 108.5
H3A—C3—H3B 107.6 C23—C24—H24B 108.5
C5—C4—C3 113.9 (3) H24A—C24—H24B 107.5
C5—C4—H4A 108.8 C26—C25—C24 115.9 (3)
C3—C4—H4A 108.8 C26—C25—H25A 108.3
C5—C4—H4B 108.8 C24—C25—H25A 108.3
C3—C4—H4B 108.8 C26—C25—H25B 108.3
H4A—C4—H4B 107.7 C24—C25—H25B 108.3
C4—C5—C6 116.4 (3) H25A—C25—H25B 107.4
C4—C5—H5A 108.2 C27—C26—C25 115.3 (3)
C6—C5—H5A 108.2 C27—C26—H26A 108.4
C4—C5—H5B 108.2 C25—C26—H26A 108.4
C6—C5—H5B 108.2 C27—C26—H26B 108.4
H5A—C5—H5B 107.3 C25—C26—H26B 108.4
C7—C6—C5 114.7 (3) H26A—C26—H26B 107.5
C7—C6—H6A 108.6 C26—C27—C28 116.2 (3)
C5—C6—H6A 108.6 C26—C27—H27A 108.2
C7—C6—H6B 108.6 C28—C27—H27A 108.2
C5—C6—H6B 108.6 C26—C27—H27B 108.2
H6A—C6—H6B 107.6 C28—C27—H27B 108.2
C6—C7—C8 115.7 (3) H27A—C27—H27B 107.4
C6—C7—H7A 108.4 C29—C28—C27 115.5 (3)
C8—C7—H7A 108.4 C29—C28—H28A 108.4
C6—C7—H7B 108.4 C27—C28—H28A 108.4
C8—C7—H7B 108.4 C29—C28—H28B 108.4
H7A—C7—H7B 107.4 C27—C28—H28B 108.4
C9—C8—C7 114.9 (3) H28A—C28—H28B 107.5
C9—C8—H8A 108.5 C28—C29—C30 116.9 (3)
C7—C8—H8A 108.5 C28—C29—H29A 108.1
C9—C8—H8B 108.5 C30—C29—H29A 108.1
C7—C8—H8B 108.5 C28—C29—H29B 108.1
H8A—C8—H8B 107.5 C30—C29—H29B 108.1
C8—C9—C10 116.6 (3) H29A—C29—H29B 107.3
C8—C9—H9A 108.2 C31—C30—C29 116.9 (3)
C10—C9—H9A 108.2 C31—C30—H30A 108.1
C8—C9—H9B 108.2 C29—C30—H30A 108.1
C10—C9—H9B 108.2 C31—C30—H30B 108.1
H9A—C9—H9B 107.3 C29—C30—H30B 108.1
C11—C10—C9 116.7 (3) H30A—C30—H30B 107.3
C11—C10—H10A 108.1 C30—C31—C32 116.4 (4)
C9—C10—H10A 108.1 C30—C31—H31A 108.2
C11—C10—H10B 108.1 C32—C31—H31A 108.2
C9—C10—H10B 108.1 C30—C31—H31B 108.2
H10A—C10—H10B 107.3 C32—C31—H31B 108.2
C12—C11—C10 116.0 (3) H31A—C31—H31B 107.3
C12—C11—H11A 108.3 C31—C32—H32A 109.5
C10—C11—H11A 108.3 C31—C32—H32B 109.5
C12—C11—H11B 108.3 H32A—C32—H32B 109.5
C10—C11—H11B 108.3 C31—C32—H32C 109.5
H11A—C11—H11B 107.4 H32A—C32—H32C 109.5
C11—C12—C13 116.9 (3) H32B—C32—H32C 109.5
C11—C12—H12A 108.1 N1—C33—C34 122.7 (3)
C13—C12—H12A 108.1 N1—C33—H33 118.6
C11—C12—H12B 108.1 C34—C33—H33 118.6
C13—C12—H12B 108.1 C33—C34—C35 119.7 (3)
H12A—C12—H12B 107.3 C33—C34—H34 120.2
C14—C13—C12 116.5 (3) C35—C34—H34 120.2
C14—C13—H13A 108.2 C34—C35—C36 118.6 (3)
C12—C13—H13A 108.2 C34—C35—H35 120.7
C14—C13—H13B 108.2 C36—C35—H35 120.7
C12—C13—H13B 108.2 C37—C36—C35 119.4 (3)
H13A—C13—H13B 107.3 C37—C36—H36 120.3
C13—C14—C15 117.5 (3) C35—C36—H36 120.3
C13—C14—H14A 107.9 N1—C37—C36 121.8 (2)
C15—C14—H14A 107.9 N1—C37—C38 113.6 (2)
C13—C14—H14B 107.9 C36—C37—C38 124.6 (2)
C15—C14—H14B 107.9 N2—C38—C39 121.7 (3)
H14A—C14—H14B 107.2 N2—C38—C37 114.8 (2)
C16—C15—C14 115.7 (4) C39—C38—C37 123.4 (3)
C16—C15—H15A 108.4 C40—C39—C38 118.3 (3)
C14—C15—H15A 108.4 C40—C39—H39 120.8
C16—C15—H15B 108.4 C38—C39—H39 120.8
C14—C15—H15B 108.4 C41—C40—C39 120.2 (3)
H15A—C15—H15B 107.4 C41—C40—H40 119.9
C15—C16—H16A 109.5 C39—C40—H40 119.9
C15—C16—H16B 109.5 C40—C41—C42 118.6 (3)
H16A—C16—H16B 109.5 C40—C41—H41 120.7
C15—C16—H16C 109.5 C42—C41—H41 120.7
H16A—C16—H16C 109.5 N2—C42—C41 122.4 (3)
H16B—C16—H16C 109.5 N2—C42—H42 118.8
O4—C17—O3 123.0 (3) C41—C42—H42 118.8
O4—C17—C18 121.1 (3) C43—O5—H5 116 (4)
O3—C17—C18 115.9 (3) O5—C43—H43A 109.5
C19—C18—C17 113.9 (2) O5—C43—H43B 109.5
C19—C18—H18A 108.8 H43A—C43—H43B 109.5
C17—C18—H18A 108.8 O5—C43—H43C 109.5
C19—C18—H18B 108.8 H43A—C43—H43C 109.5
C17—C18—H18B 108.8 H43B—C43—H43C 109.5
H18A—C18—H18B 107.7

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C33—H33···O1i 0.93 2.50 3.093 (3) 122
C33—H33···O3i 0.93 2.57 3.071 (3) 114
C35—H35···O2ii 0.93 2.42 3.129 (3) 134
C39—H39···O4iii 0.93 2.41 3.258 (4) 152
C41—H41···O5iv 0.93 2.46 3.153 (4) 131
C42—H42···O1 0.93 2.59 3.096 (3) 115
O5—H5···O2 0.86 (2) 1.89 (3) 2.732 (4) 166 (6)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) x, y−1, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2420).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Antolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219–1222.
  3. Barbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Giroud-Godquin, A. M. (1998). Coord. Chem. Rev. 180, 1485–1499.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  9. Zhang, Z.-G., Dong, X.-D., Li, Y.-P., Pu, X.-H., Huo, F.-J. & Zhu, M.-L. (2006). Acta Cryst. E62, m2326–m2327.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013559/om2420sup1.cif

e-67-0m599-sup1.cif (31.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013559/om2420Isup2.hkl

e-67-0m599-Isup2.hkl (395.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES