Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1283–o1284. doi: 10.1107/S1600536811005678

3-(4-Chloro­anilino)-2,5-dimethyl­cyclo­hex-2-en-1-one

Henry North a, Kwame Wutoh b, M’egya K Odoom c, Pradeep Karla a, Kenneth R Scott a, Ray J Butcher d,*
PMCID: PMC3089366  PMID: 21754564

Abstract

In the title compound, C14H16ClNO, the dihedral angle between the benzene ring and the conjugated part of the cyclo­hexene ring is 61.7 (2)°. Part of the cyclo­hexene ring and one of the attached methyl groups are disordered over two orientations with occupancies of 0.602 (7) and 0.398 (7). In addition, the crystal studied was a racemic twin [Flack parameter = 0.58 (4)]. In the crystal, the mol­ecules are linked into chains in the b-axis direction by inter­molecular N—H⋯O hydrogen bonds. C—H⋯O and C—H⋯Cl inter­actions are also observed.

Related literature

The title compound 3-(4-chloro­phenyl­amino)-2,5-dimethyl­cyclo­hex-2-enone possesses significant anti­convulsant properties. For the anti­convulsant properties of enamino­nes, see: Edafiogho et al. (1992); Eddington et al. (2003); Scott et al. (1993, 1995). For related structures see: Alexander et al. (2010, 2011).graphic file with name e-67-o1283-scheme1.jpg

Experimental

Crystal data

  • C14H16ClNO

  • M r = 249.73

  • Monoclinic, Inline graphic

  • a = 6.0775 (5) Å

  • b = 8.8106 (5) Å

  • c = 12.5794 (7) Å

  • β = 99.904 (7)°

  • V = 663.5 (1) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.41 mm−1

  • T = 295 K

  • 0.45 × 0.28 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.679, T max = 1.000

  • 2292 measured reflections

  • 1705 independent reflections

  • 1417 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.150

  • S = 1.00

  • 1705 reflections

  • 171 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 259 Friedel pairs

  • Flack parameter: 0.58 (4)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005678/hg2794sup1.cif

e-67-o1283-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005678/hg2794Isup2.hkl

e-67-o1283-Isup2.hkl (84KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.10 2.897 (4) 155
C6—H6A⋯O1ii 0.93 2.42 3.340 (4) 172
C12A—H12A⋯O1ii 0.97 2.58 3.439 (9) 147
C12B—H12D⋯Cl1iii 0.97 2.95 3.79 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are indebted to Mr James P. Stables, Epilepsy Branch, Division of Convulsive, Developmental and Neuromuscular Disorders, National Institute of Neurological Disorders and Stroke, for helpful discussions and initial data. The authors wish to acknowledge E. Jeannette Andrews, EdD, Deputy Director of the Center of Excellence at Howard University College of Pharmacy, Nursing and Allied Health Sciences, for her generous assistance in completing this project. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

The study of enaminones has led to several compounds possessing anticonvulsant properties (Edafiogho et al., 1992; Eddington et al., 2003; Scott et al., 1993, 1995; Alexander et al., 2010, 2011). Our group has extensively studied the effects of modification of the enaminone with substitutions at the methyl ester, ethyl ester, and without the ester group. Early in our work, the N–H binding site was confirmed when it was found that no compound was active with the N–H proton missing. All of the active compounds were para-substituted with an electron-withdrawing group. A series of compounds with vinyl proton substitution has recently synthesized. The title compound, 3-(4-chlorophenylamino)-2,5-dimethylcyclohex-2-enone was exclusively active in the maximal electroshock seizure evaluation (MES) in mice, indicative of protection against tonic-clonic convulsions in humans. The MES test with mice revealed no activity at the 30 mg kg-1 dose, however in the 100 mg kg-1 dose, 3/3 of the animals were protected at 30 minutes and 0/3 of the animals were protected at 4 h. At a dose of 300 mg kg-1, 1/1 animals were protected 30 min and 4 h. There was toxicity at 30 min in 2/4 animals. In the rat MES study, at a dose of 30 mg kg-1, 1/4 of the animals were protected at 1 and 2 h with no toxicity.

Since the shape of the molecule is important in determining binding to the receptor sites it is of interest to note that the dihedral angle between the phenyl ring and the conjugated part of the cyclohexene ring is 61.7 (2)°. The backbone of the cyclohexene ring is disordered over two conformations with occupancies of 0.602 (7) and 0.398 (7), respectively. In addition the compound is a racemic twin (Flack parameter of 0.58 (4)). The molecules are linked in chains in the b direction by intermolecular N—H···O hydrogen bonds.

Experimental

Iodomethane (11.2 ml, 0.18 mol, 1.5 equiv) was added to a solution of 5-methyl-1,3-cyclohexanedione (15.0 g, 0.119 mol) in 4 N aqueous sodium hydroxide (30 mL, 1.0 equiv of NaOH) in a two-neck 250 ml round bottom flask fitted with a magnetic stirrer and condenser. The solution was refluxed for 20 h and cooled to room temperature, then refrigerated at 0°C overnight. Vacuum filtration of the reaction mixture gave a crystalline mass dried to yield 9.24 g (54%). The crystalline mass, 2,5-dimethyl-1,3-cyclohexadione (2.10 g, 15 mmol), mp 170–172°C (lit. mp 130–131.5°C), 4-chloroaniline (2.32 g, 18 mmol), and toluene (60 ml) was added to a 150 ml single neck round bottom flask containing a stir bar. The solution was refluxed and stirred for 6 h with azeotropic removal of water by Dean-Stark trap. After standing overnight, crystals appeared. Evaporation under reduced pressure yielded crystals that were recrystallized from EtOAc, 44.3% yield (mp 183–185°C).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.93 and 0.98 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to N were idealized with an N–H distance of 0.86 Å. The backbone of the cyclohexene was disordered over two conformations with occupancies of 0.602 (7) and 0.398 (7), respectively.

Figures

Fig. 1.

Fig. 1.

Diagram of 3-(4-Chlorophenylamino)-2,5-dimethylcyclohex-2-enone showing atom labeling scheme. Thermal ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The molecular packing for 3-(4-Chlorophenylamino)-2,5-dimethylcyclohex-2-enone viewed down the a axis. Intermolecular interactions are shown by dashed lines.

Crystal data

C14H16ClNO F(000) = 264
Mr = 249.73 Dx = 1.250 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2yb Cell parameters from 1339 reflections
a = 6.0775 (5) Å θ = 5.0–73.9°
b = 8.8106 (5) Å µ = 2.41 mm1
c = 12.5794 (7) Å T = 295 K
β = 99.904 (7)° Chunk, colorless
V = 663.5 (1) Å3 0.45 × 0.28 × 0.10 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 1705 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1417 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 10.5081 pixels mm-1 θmax = 74.1°, θmin = 6.2°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −10→5
Tmin = 0.679, Tmax = 1.000 l = −13→15
2292 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.1145P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
1705 reflections Δρmax = 0.22 e Å3
171 parameters Δρmin = −0.17 e Å3
1 restraint Absolute structure: Flack (1983), 259 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.58 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.8577 (2) −0.13354 (18) 0.49024 (9) 0.1059 (5)
O1 0.7909 (4) 0.7372 (4) −0.0704 (2) 0.0739 (7)
N1 0.6375 (5) 0.3591 (5) 0.1708 (2) 0.0660 (7)
H1 0.5033 0.3524 0.1357 0.079*
C1 0.7018 (5) 0.2490 (4) 0.2532 (2) 0.0577 (8)
C2 0.5554 (6) 0.2139 (6) 0.3223 (3) 0.0706 (10)
H2A 0.4243 0.2693 0.3193 0.085*
C3 0.6030 (7) 0.0966 (6) 0.3961 (3) 0.0775 (11)
H3A 0.5036 0.0717 0.4419 0.093*
C4 0.7978 (7) 0.0183 (5) 0.4006 (3) 0.0716 (10)
C5 0.9464 (6) 0.0537 (5) 0.3342 (3) 0.0685 (9)
H5A 1.0803 0.0009 0.3397 0.082*
C6 0.8969 (6) 0.1680 (5) 0.2591 (3) 0.0630 (8)
H6A 0.9957 0.1904 0.2125 0.076*
C7 0.7639 (6) 0.4728 (4) 0.1416 (3) 0.0576 (8)
C8 0.7074 (6) 0.5456 (4) 0.0452 (3) 0.0576 (7)
C9 0.8352 (5) 0.6705 (5) 0.0176 (3) 0.0614 (8)
C10A 1.051 (3) 0.719 (3) 0.0899 (17) 0.066 (3) 0.602 (7)
H10A 1.0710 0.8274 0.0847 0.080* 0.602 (7)
H10B 1.1773 0.6689 0.0664 0.080* 0.602 (7)
C11A 1.0433 (10) 0.6749 (8) 0.2071 (5) 0.0654 (13) 0.602 (7)
H11A 0.9295 0.7376 0.2324 0.078* 0.602 (7)
C12A 0.977 (3) 0.5058 (16) 0.2158 (13) 0.059 (2) 0.602 (7)
H12A 1.0945 0.4414 0.1976 0.070* 0.602 (7)
H12B 0.9599 0.4834 0.2894 0.070* 0.602 (7)
C14A 1.270 (3) 0.708 (2) 0.279 (2) 0.081 (4) 0.602 (7)
H14A 1.3132 0.8111 0.2684 0.122* 0.602 (7)
H14B 1.3813 0.6404 0.2606 0.122* 0.602 (7)
H14C 1.2575 0.6937 0.3535 0.122* 0.602 (7)
C10B 1.015 (6) 0.732 (5) 0.110 (3) 0.066 (3) 0.398 (7)
H10C 1.1249 0.7883 0.0783 0.080* 0.398 (7)
H10D 0.9443 0.8023 0.1529 0.080* 0.398 (7)
C11B 1.1314 (16) 0.6105 (13) 0.1820 (8) 0.0654 (13) 0.398 (7)
H11B 1.1935 0.5344 0.1386 0.078* 0.398 (7)
C12B 0.950 (5) 0.540 (3) 0.233 (2) 0.059 (2) 0.398 (7)
H12C 0.8849 0.6157 0.2745 0.070* 0.398 (7)
H12D 1.0119 0.4596 0.2822 0.070* 0.398 (7)
C14B 1.321 (6) 0.673 (4) 0.272 (4) 0.081 (4) 0.398 (7)
H14D 1.4200 0.5920 0.3000 0.122* 0.398 (7)
H14E 1.2559 0.7160 0.3298 0.122* 0.398 (7)
H14F 1.4044 0.7502 0.2423 0.122* 0.398 (7)
C13 0.5116 (7) 0.4931 (5) −0.0383 (3) 0.0716 (10)
H13A 0.5080 0.3842 −0.0402 0.107*
H13B 0.5279 0.5312 −0.1080 0.107*
H13C 0.3749 0.5306 −0.0196 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1398 (11) 0.0944 (8) 0.0775 (6) 0.0012 (8) 0.0015 (6) 0.0320 (6)
O1 0.0719 (15) 0.0806 (17) 0.0706 (14) 0.0063 (14) 0.0158 (11) 0.0202 (13)
N1 0.0611 (14) 0.0737 (18) 0.0575 (14) −0.0048 (16) −0.0060 (11) 0.0102 (15)
C1 0.0651 (18) 0.0592 (19) 0.0451 (14) −0.0076 (16) −0.0009 (12) 0.0016 (13)
C2 0.0615 (18) 0.085 (3) 0.0630 (18) −0.0002 (19) 0.0042 (14) 0.0081 (18)
C3 0.074 (2) 0.100 (3) 0.0582 (17) −0.009 (2) 0.0091 (15) 0.015 (2)
C4 0.087 (3) 0.068 (2) 0.0535 (17) −0.008 (2) −0.0037 (15) 0.0098 (16)
C5 0.074 (2) 0.065 (2) 0.0623 (18) 0.003 (2) −0.0017 (15) −0.0009 (17)
C6 0.0663 (18) 0.066 (2) 0.0556 (15) −0.0063 (19) 0.0059 (13) −0.0038 (16)
C7 0.0562 (16) 0.0566 (19) 0.0579 (16) −0.0011 (15) 0.0042 (12) −0.0010 (15)
C8 0.0563 (16) 0.0581 (18) 0.0566 (16) 0.0059 (16) 0.0046 (12) −0.0017 (15)
C9 0.0585 (16) 0.0611 (19) 0.0660 (18) 0.0088 (17) 0.0144 (14) 0.0059 (17)
C10A 0.057 (7) 0.072 (6) 0.073 (8) −0.005 (5) 0.021 (4) 0.005 (6)
C11A 0.062 (3) 0.060 (4) 0.070 (3) 0.000 (3) 0.001 (2) −0.007 (3)
C12A 0.065 (5) 0.051 (7) 0.056 (6) 0.003 (5) 0.000 (3) −0.006 (4)
C14A 0.070 (10) 0.075 (10) 0.092 (4) −0.006 (6) −0.007 (6) −0.005 (7)
C10B 0.057 (7) 0.072 (6) 0.073 (8) −0.005 (5) 0.021 (4) 0.005 (6)
C11B 0.062 (3) 0.060 (4) 0.070 (3) 0.000 (3) 0.001 (2) −0.007 (3)
C12B 0.065 (5) 0.051 (7) 0.056 (6) 0.003 (5) 0.000 (3) −0.006 (4)
C14B 0.070 (10) 0.075 (10) 0.092 (4) −0.006 (6) −0.007 (6) −0.005 (7)
C13 0.072 (2) 0.075 (2) 0.0617 (19) 0.000 (2) −0.0045 (16) 0.0077 (18)

Geometric parameters (Å, °)

Cl1—C4 1.747 (4) C10A—H10B 0.9700
O1—C9 1.241 (4) C11A—C14A 1.54 (2)
N1—C7 1.351 (5) C11A—C12A 1.552 (18)
N1—C1 1.424 (5) C11A—H11A 0.9800
N1—H1 0.8600 C12A—H12A 0.9700
C1—C6 1.375 (5) C12A—H12B 0.9700
C1—C2 1.382 (5) C14A—H14A 0.9600
C2—C3 1.386 (6) C14A—H14B 0.9600
C2—H2A 0.9300 C14A—H14C 0.9600
C3—C4 1.363 (6) C10B—C11B 1.50 (4)
C3—H3A 0.9300 C10B—H10C 0.9700
C4—C5 1.367 (5) C10B—H10D 0.9700
C5—C6 1.378 (6) C11B—C12B 1.50 (3)
C5—H5A 0.9300 C11B—C14B 1.58 (5)
C6—H6A 0.9300 C11B—H11B 0.9800
C7—C8 1.363 (5) C12B—H12C 0.9700
C7—C12A 1.489 (19) C12B—H12D 0.9700
C7—C12B 1.58 (3) C14B—H14D 0.9600
C8—C9 1.424 (5) C14B—H14E 0.9600
C8—C13 1.518 (5) C14B—H14F 0.9600
C9—C10A 1.52 (3) C13—H13A 0.9600
C9—C10B 1.55 (4) C13—H13B 0.9600
C10A—C11A 1.53 (2) C13—H13C 0.9600
C10A—H10A 0.9700
C7—N1—C1 127.3 (3) C10A—C11A—C14A 110.2 (14)
C7—N1—H1 116.4 C10A—C11A—C12A 111.1 (13)
C1—N1—H1 116.4 C14A—C11A—C12A 110.9 (12)
C6—C1—C2 119.5 (3) C10A—C11A—H11A 108.2
C6—C1—N1 121.3 (3) C14A—C11A—H11A 108.2
C2—C1—N1 119.0 (3) C12A—C11A—H11A 108.2
C1—C2—C3 120.4 (4) C7—C12A—C11A 110.6 (11)
C1—C2—H2A 119.8 C7—C12A—H12A 109.5
C3—C2—H2A 119.8 C11A—C12A—H12A 109.5
C4—C3—C2 119.0 (4) C7—C12A—H12B 109.5
C4—C3—H3A 120.5 C11A—C12A—H12B 109.5
C2—C3—H3A 120.5 H12A—C12A—H12B 108.1
C3—C4—C5 121.3 (4) C11B—C10B—C9 114 (3)
C3—C4—Cl1 119.8 (3) C11B—C10B—H10C 108.8
C5—C4—Cl1 118.9 (3) C9—C10B—H10C 108.8
C4—C5—C6 119.8 (4) C11B—C10B—H10D 108.8
C4—C5—H5A 120.1 C9—C10B—H10D 108.8
C6—C5—H5A 120.1 H10C—C10B—H10D 107.7
C1—C6—C5 120.1 (3) C10B—C11B—C12B 104.5 (18)
C1—C6—H6A 120.0 C10B—C11B—C14B 113 (2)
C5—C6—H6A 120.0 C12B—C11B—C14B 110 (2)
N1—C7—C8 121.5 (3) C10B—C11B—H11B 109.7
N1—C7—C12A 116.6 (8) C12B—C11B—H11B 109.7
C8—C7—C12A 121.7 (8) C14B—C11B—H11B 109.7
N1—C7—C12B 116.5 (12) C11B—C12B—C7 109.0 (17)
C8—C7—C12B 120.8 (12) C11B—C12B—H12C 109.9
C12A—C7—C12B 15.4 (10) C7—C12B—H12C 109.9
C7—C8—C9 121.1 (3) C11B—C12B—H12D 109.9
C7—C8—C13 121.3 (3) C7—C12B—H12D 109.9
C9—C8—C13 117.6 (3) H12C—C12B—H12D 108.3
O1—C9—C8 122.6 (3) C11B—C14B—H14D 109.5
O1—C9—C10A 115.7 (10) C11B—C14B—H14E 109.5
C8—C9—C10A 121.3 (10) H14D—C14B—H14E 109.5
O1—C9—C10B 121.3 (16) C11B—C14B—H14F 109.5
C8—C9—C10B 115.6 (15) H14D—C14B—H14F 109.5
C10A—C9—C10B 14.3 (11) H14E—C14B—H14F 109.5
C9—C10A—C11A 109.7 (13) C8—C13—H13A 109.5
C9—C10A—H10A 109.7 C8—C13—H13B 109.5
C11A—C10A—H10A 109.7 H13A—C13—H13B 109.5
C9—C10A—H10B 109.7 C8—C13—H13C 109.5
C11A—C10A—H10B 109.7 H13A—C13—H13C 109.5
H10A—C10A—H10B 108.2 H13B—C13—H13C 109.5
C7—N1—C1—C6 −49.7 (6) C13—C8—C9—C10A −172.1 (8)
C7—N1—C1—C2 136.0 (4) C7—C8—C9—C10B −9.3 (13)
C6—C1—C2—C3 −1.0 (6) C13—C8—C9—C10B 173.0 (13)
N1—C1—C2—C3 173.4 (4) O1—C9—C10A—C11A 159.1 (10)
C1—C2—C3—C4 1.1 (6) C8—C9—C10A—C11A −27.6 (17)
C2—C3—C4—C5 0.3 (6) C10B—C9—C10A—C11A 43 (10)
C2—C3—C4—Cl1 −178.1 (3) C9—C10A—C11A—C14A 174.3 (12)
C3—C4—C5—C6 −1.7 (6) C9—C10A—C11A—C12A 50.9 (17)
Cl1—C4—C5—C6 176.7 (3) N1—C7—C12A—C11A −152.2 (7)
C2—C1—C6—C5 −0.5 (5) C8—C7—C12A—C11A 32.7 (10)
N1—C1—C6—C5 −174.8 (3) C12B—C7—C12A—C11A −59 (6)
C4—C5—C6—C1 1.9 (6) C10A—C11A—C12A—C7 −54.1 (13)
C1—N1—C7—C8 162.5 (3) C14A—C11A—C12A—C7 −177.0 (10)
C1—N1—C7—C12A −12.5 (7) O1—C9—C10B—C11B −149.8 (12)
C1—N1—C7—C12B −29.8 (10) C8—C9—C10B—C11B 37.9 (17)
N1—C7—C8—C9 176.7 (3) C10A—C9—C10B—C11B −79 (10)
C12A—C7—C8—C9 −8.4 (7) C9—C10B—C11B—C12B −63.3 (18)
C12B—C7—C8—C9 9.6 (10) C9—C10B—C11B—C14B 177.3 (18)
N1—C7—C8—C13 −5.6 (6) C10B—C11B—C12B—C7 60 (2)
C12A—C7—C8—C13 169.2 (5) C14B—C11B—C12B—C7 −178.3 (16)
C12B—C7—C8—C13 −172.8 (9) N1—C7—C12B—C11B 155.6 (11)
C7—C8—C9—O1 178.5 (4) C8—C7—C12B—C11B −36.6 (17)
C13—C8—C9—O1 0.7 (5) C12A—C7—C12B—C11B 61 (6)
C7—C8—C9—C10A 5.6 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.10 2.897 (4) 155
C6—H6A···O1ii 0.93 2.42 3.340 (4) 172
C12A—H12A···O1ii 0.97 2.58 3.439 (9) 147
C12B—H12D···Cl1iii 0.97 2.95 3.79 (3) 146

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) −x+2, y−1/2, −z; (iii) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2794).

References

  1. Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2010). Acta Cryst. E66, o3229. [DOI] [PMC free article] [PubMed]
  2. Alexander, M. S., North, H., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67, o224. [DOI] [PMC free article] [PubMed]
  3. Edafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem. 35, 2798–2805. [DOI] [PubMed]
  4. Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49–64. [DOI] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  7. Scott, K. R., Edafiogho, I. O., Richardson, E. R., Farrar, V. A., Moore, J. A., Tietz, E., Hinko, C. N., Chang, H., El-Assadi, A. & Nicholson, J. M. (1993). J. Med. Chem. 36, 1947–1955. [DOI] [PubMed]
  8. Scott, K. R., Rankin, G. O., Stables, J. P., Alexander, M. S., Edafiogho, I. O., Farrar, V. A., Kolen, K. R., Moore, J. A., Sims, L. D. & Tonnu, A. D. (1995). J. Med. Chem. 38, 4033–4043. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811005678/hg2794sup1.cif

e-67-o1283-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811005678/hg2794Isup2.hkl

e-67-o1283-Isup2.hkl (84KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES