Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1209. doi: 10.1107/S1600536811012724

2-{4-[(Quinolin-8-yl­oxy)meth­yl]phen­yl}benzonitrile

Bin Wei a,*
PMCID: PMC3089367  PMID: 21754508

Abstract

In the title compound, C23H16N2O, the bond angle at the O atom that connects the benzene ring and the quinoline ring system is 116.0 (2)°. The quinoline ring system make a dihedral angle of 16.5 (2)° with the adjacent benzene ring. The dihedral angle between the biphenyl benzene rings is 70.8 (2)°.

Related literature

For background to tetra­zoles, see: Hang et al. (2009). For our investigation of tetra­zole compounds and their coordination modes, see: Xiong et al. (2002). For the preparation of tetra­zoles using in situ synthesis of tetra­zole through cyclo­addition between organotin azide and organic cyano groups, see: Chen et al. (2010); Ye et al. (2006).graphic file with name e-67-o1209-scheme1.jpg

Experimental

Crystal data

  • C23H16N2O

  • M r = 336.38

  • Orthorhombic, Inline graphic

  • a = 14.526 (4) Å

  • b = 8.957 (3) Å

  • c = 27.126 (8) Å

  • V = 3529.3 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.842, T max = 1.000

  • 36455 measured reflections

  • 4036 independent reflections

  • 2865 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082

  • wR(F 2) = 0.222

  • S = 1.24

  • 4036 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012724/jh2278sup1.cif

e-67-o1209-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012724/jh2278Isup2.hkl

e-67-o1209-Isup2.hkl (201.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Tetrazole compounds have been studied for more than one hundred years and applied in various areas (Hang et al., 2009). As a part of systematic investigation of new tetrazole compounds and discovery of new coordination mode (Xiong et al., 2002), we get the synthesis of the title compound C22 H16 N2 O,and preparation of tetrazoles in situ synthesis of tetrazole through cycloaddition between organotin azide and organic cyano group (Ye et al., 2006; Chen et al., 2010).

In the asymmetric unit of the title compound, the planes angle between the two benzene rings is 70.8°. O1 connect quinoline ring and sartan ring with a 115.9 bond-angle and the bond length O1—C10 is 1.4261 (35) Å, O1—C9 is 1.3691 (33) Å). The quinoline ring make a small dihedral angle of 16.5° with adjacent benzene ring (Fig 1). Fig 2 shows that the molecules assemble as straight chain in the crystal structure along the a axis.

Experimental

8-hydroxyquinoline(1.45 g,10 mmol) was added in a solution of 4'-Bromoethyl-2-cyanobiphenyl(2.71 g,10 mmol) in methanol(20 ml).After the mixture was stirred for 10 h at 355 K,the precipitate was filtered off and the solution was evaporated in vacuum. The crude product was then crystallized form ethanol to yield colourless prisms of the title compound.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H respectively, and constrained to ride on their parent atoms with Uĩso~(H) = xU~eq~(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal structure of the title compound with view along the a axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C23H16N2O Dx = 1.266 Mg m3
Mr = 336.38 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 6593 reflections
a = 14.526 (4) Å θ = 2.3–27.5°
b = 8.957 (3) Å µ = 0.08 mm1
c = 27.126 (8) Å T = 293 K
V = 3529.3 (18) Å3 Prism, colorless
Z = 8 0.20 × 0.20 × 0.20 mm
F(000) = 1408

Data collection

Rigaku Mercury CCD diffractometer 4036 independent reflections
Radiation source: fine-focus sealed tube 2865 reflections with I > 2σ(I)
graphite Rint = 0.073
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 1.5°
ω scans h = −18→18
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −11→11
Tmin = 0.842, Tmax = 1.000 l = −35→35
36455 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.082 H-atom parameters constrained
wR(F2) = 0.222 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.8691P] where P = (Fo2 + 2Fc2)/3
S = 1.24 (Δ/σ)max < 0.001
4036 reflections Δρmax = 0.19 e Å3
235 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0000

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.28089 (13) 0.1887 (2) 0.29588 (6) 0.0503 (5)
N1 0.43511 (16) 0.3299 (3) 0.26974 (8) 0.0494 (6)
C8 0.38445 (18) 0.2633 (3) 0.23340 (9) 0.0421 (6)
C11 0.17557 (18) 0.1423 (3) 0.36270 (10) 0.0430 (6)
C10 0.2001 (2) 0.1096 (3) 0.30999 (10) 0.0501 (7)
H10A 0.2103 0.0032 0.3060 0.060*
H10B 0.1494 0.1383 0.2887 0.060*
C9 0.30312 (19) 0.1836 (3) 0.24685 (9) 0.0435 (6)
C4 0.4091 (2) 0.2693 (3) 0.18282 (10) 0.0481 (7)
C16 0.2179 (2) 0.2507 (4) 0.39095 (10) 0.0534 (7)
H16A 0.2675 0.3036 0.3781 0.064*
C17 0.0766 (2) 0.2387 (3) 0.50852 (10) 0.0502 (7)
C14 0.11330 (18) 0.2051 (3) 0.45827 (10) 0.0462 (6)
C7 0.2541 (2) 0.1086 (3) 0.21157 (11) 0.0542 (7)
H7A 0.2025 0.0537 0.2207 0.065*
C5 0.3561 (2) 0.1925 (4) 0.14748 (11) 0.0608 (8)
H5A 0.3727 0.1960 0.1144 0.073*
C22 0.1263 (2) 0.2008 (3) 0.55117 (10) 0.0540 (7)
C15 0.1872 (2) 0.2815 (4) 0.43839 (10) 0.0566 (8)
H15A 0.2167 0.3544 0.4570 0.068*
C13 0.0722 (2) 0.0939 (3) 0.42995 (11) 0.0536 (7)
H13A 0.0231 0.0399 0.4428 0.064*
C12 0.1033 (2) 0.0629 (3) 0.38308 (10) 0.0534 (7)
H12A 0.0753 −0.0125 0.3649 0.064*
C6 0.2808 (2) 0.1134 (4) 0.16163 (11) 0.0627 (9)
H6A 0.2465 0.0620 0.1382 0.075*
C2 0.5370 (2) 0.4211 (4) 0.20652 (13) 0.0682 (9)
H2A 0.5888 0.4776 0.1988 0.082*
C3 0.4879 (2) 0.3538 (4) 0.17066 (11) 0.0592 (8)
H3A 0.5059 0.3630 0.1379 0.071*
C1 0.5086 (2) 0.4045 (4) 0.25572 (12) 0.0626 (8)
H1A 0.5442 0.4492 0.2801 0.075*
C23 0.2152 (3) 0.1308 (4) 0.54694 (12) 0.0694 (9)
C21 0.0894 (3) 0.2274 (4) 0.59785 (12) 0.0677 (9)
H21A 0.1226 0.2013 0.6259 0.081*
C18 −0.0090 (2) 0.3026 (4) 0.51433 (13) 0.0685 (9)
H18A −0.0434 0.3274 0.4866 0.082*
C20 0.0046 (3) 0.2917 (4) 0.60239 (14) 0.0755 (11)
H20A −0.0200 0.3093 0.6335 0.091*
N2 0.2850 (3) 0.0735 (5) 0.54410 (13) 0.0980 (12)
C19 −0.0448 (3) 0.3306 (4) 0.56077 (16) 0.0808 (11)
H19A −0.1021 0.3756 0.5639 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0526 (11) 0.0582 (12) 0.0403 (10) −0.0130 (9) 0.0084 (8) −0.0045 (8)
N1 0.0530 (14) 0.0500 (13) 0.0452 (13) −0.0064 (11) 0.0065 (11) −0.0081 (10)
C8 0.0484 (15) 0.0366 (13) 0.0413 (14) 0.0055 (11) 0.0039 (12) −0.0010 (10)
C11 0.0430 (14) 0.0442 (14) 0.0419 (13) −0.0008 (12) 0.0014 (11) 0.0029 (11)
C10 0.0508 (16) 0.0548 (17) 0.0446 (15) −0.0085 (13) 0.0050 (12) −0.0010 (12)
C9 0.0477 (15) 0.0438 (14) 0.0390 (13) 0.0023 (12) 0.0022 (11) −0.0024 (11)
C4 0.0576 (17) 0.0451 (15) 0.0417 (14) 0.0078 (13) 0.0067 (13) −0.0003 (11)
C16 0.0488 (16) 0.0679 (18) 0.0434 (15) −0.0165 (14) 0.0076 (12) 0.0006 (13)
C17 0.0560 (17) 0.0472 (15) 0.0475 (16) −0.0096 (13) 0.0073 (13) 0.0010 (12)
C14 0.0454 (15) 0.0493 (15) 0.0439 (14) 0.0000 (12) 0.0026 (12) 0.0031 (12)
C7 0.0549 (16) 0.0600 (18) 0.0477 (15) −0.0070 (14) 0.0022 (14) −0.0087 (13)
C5 0.071 (2) 0.073 (2) 0.0380 (15) 0.0056 (17) 0.0026 (14) −0.0006 (14)
C22 0.0641 (19) 0.0542 (16) 0.0438 (15) −0.0110 (15) 0.0077 (14) −0.0029 (13)
C15 0.0585 (18) 0.0662 (19) 0.0452 (16) −0.0195 (15) 0.0037 (13) −0.0071 (14)
C13 0.0552 (17) 0.0577 (17) 0.0479 (15) −0.0166 (14) 0.0076 (13) 0.0020 (13)
C12 0.0611 (18) 0.0536 (16) 0.0455 (15) −0.0181 (14) 0.0011 (14) −0.0025 (13)
C6 0.066 (2) 0.077 (2) 0.0458 (16) −0.0022 (17) −0.0065 (15) −0.0132 (15)
C2 0.070 (2) 0.0615 (19) 0.073 (2) −0.0180 (17) 0.0265 (18) −0.0058 (17)
C3 0.072 (2) 0.0546 (17) 0.0515 (17) −0.0007 (16) 0.0188 (16) 0.0033 (14)
C1 0.0637 (19) 0.0588 (18) 0.065 (2) −0.0146 (16) 0.0060 (16) −0.0129 (15)
C23 0.075 (2) 0.089 (3) 0.0438 (17) 0.001 (2) −0.0009 (17) 0.0068 (16)
C21 0.089 (3) 0.066 (2) 0.0479 (17) −0.0169 (19) 0.0109 (17) −0.0081 (15)
C18 0.065 (2) 0.074 (2) 0.066 (2) 0.0056 (18) 0.0153 (17) 0.0038 (17)
C20 0.103 (3) 0.060 (2) 0.063 (2) −0.014 (2) 0.036 (2) −0.0132 (17)
N2 0.088 (3) 0.135 (3) 0.071 (2) 0.025 (2) −0.0001 (19) 0.015 (2)
C19 0.080 (3) 0.070 (2) 0.092 (3) 0.005 (2) 0.036 (2) −0.002 (2)

Geometric parameters (Å, °)

O1—C9 1.369 (3) C5—C6 1.359 (5)
O1—C10 1.423 (3) C5—H5A 0.9300
N1—C1 1.316 (4) C22—C21 1.395 (4)
N1—C8 1.367 (3) C22—C23 1.441 (5)
C8—C4 1.419 (4) C15—H15A 0.9300
C8—C9 1.427 (4) C13—C12 1.378 (4)
C11—C16 1.381 (4) C13—H13A 0.9300
C11—C12 1.383 (4) C12—H12A 0.9300
C11—C10 1.503 (4) C6—H6A 0.9300
C10—H10A 0.9700 C2—C3 1.349 (5)
C10—H10B 0.9700 C2—C1 1.405 (4)
C9—C7 1.369 (4) C2—H2A 0.9300
C4—C5 1.409 (4) C3—H3A 0.9300
C4—C3 1.410 (4) C1—H1A 0.9300
C16—C15 1.390 (4) C23—N2 1.139 (5)
C16—H16A 0.9300 C21—C20 1.365 (5)
C17—C18 1.378 (4) C21—H21A 0.9300
C17—C22 1.405 (4) C18—C19 1.385 (5)
C17—C14 1.494 (4) C18—H18A 0.9300
C14—C15 1.383 (4) C20—C19 1.382 (6)
C14—C13 1.393 (4) C20—H20A 0.9300
C7—C6 1.410 (4) C19—H19A 0.9300
C7—H7A 0.9300
C9—O1—C10 116.0 (2) C21—C22—C23 119.4 (3)
C1—N1—C8 116.8 (2) C17—C22—C23 120.0 (3)
N1—C8—C4 123.0 (2) C14—C15—C16 120.8 (3)
N1—C8—C9 118.6 (2) C14—C15—H15A 119.6
C4—C8—C9 118.4 (2) C16—C15—H15A 119.6
C16—C11—C12 118.5 (3) C12—C13—C14 120.8 (3)
C16—C11—C10 124.0 (2) C12—C13—H13A 119.6
C12—C11—C10 117.4 (2) C14—C13—H13A 119.6
O1—C10—C11 110.8 (2) C13—C12—C11 120.9 (3)
O1—C10—H10A 109.5 C13—C12—H12A 119.5
C11—C10—H10A 109.5 C11—C12—H12A 119.5
O1—C10—H10B 109.5 C5—C6—C7 120.6 (3)
C11—C10—H10B 109.5 C5—C6—H6A 119.7
H10A—C10—H10B 108.1 C7—C6—H6A 119.7
O1—C9—C7 124.9 (3) C3—C2—C1 118.8 (3)
O1—C9—C8 115.3 (2) C3—C2—H2A 120.6
C7—C9—C8 119.8 (2) C1—C2—H2A 120.6
C5—C4—C3 123.1 (3) C2—C3—C4 120.0 (3)
C5—C4—C8 120.1 (3) C2—C3—H3A 120.0
C3—C4—C8 116.8 (3) C4—C3—H3A 120.0
C11—C16—C15 120.7 (3) N1—C1—C2 124.5 (3)
C11—C16—H16A 119.6 N1—C1—H1A 117.7
C15—C16—H16A 119.6 C2—C1—H1A 117.7
C18—C17—C22 118.0 (3) N2—C23—C22 178.8 (4)
C18—C17—C14 120.7 (3) C20—C21—C22 120.0 (3)
C22—C17—C14 121.3 (3) C20—C21—H21A 120.0
C15—C14—C13 118.2 (3) C22—C21—H21A 120.0
C15—C14—C17 122.2 (3) C17—C18—C19 121.2 (4)
C13—C14—C17 119.6 (2) C17—C18—H18A 119.4
C9—C7—C6 120.9 (3) C19—C18—H18A 119.4
C9—C7—H7A 119.5 C21—C20—C19 120.0 (3)
C6—C7—H7A 119.5 C21—C20—H20A 120.0
C6—C5—C4 120.2 (3) C19—C20—H20A 120.0
C6—C5—H5A 119.9 C20—C19—C18 120.2 (4)
C4—C5—H5A 119.9 C20—C19—H19A 119.9
C21—C22—C17 120.6 (3) C18—C19—H19A 119.9
C1—N1—C8—C4 1.3 (4) C18—C17—C22—C23 178.7 (3)
C1—N1—C8—C9 −178.8 (3) C14—C17—C22—C23 1.2 (4)
C9—O1—C10—C11 −171.6 (2) C13—C14—C15—C16 1.7 (5)
C16—C11—C10—O1 8.7 (4) C17—C14—C15—C16 −178.0 (3)
C12—C11—C10—O1 −174.3 (2) C11—C16—C15—C14 −0.4 (5)
C10—O1—C9—C7 −0.4 (4) C15—C14—C13—C12 −1.2 (5)
C10—O1—C9—C8 −179.8 (2) C17—C14—C13—C12 178.6 (3)
N1—C8—C9—O1 3.3 (3) C14—C13—C12—C11 −0.7 (5)
C4—C8—C9—O1 −176.8 (2) C16—C11—C12—C13 2.0 (4)
N1—C8—C9—C7 −176.2 (3) C10—C11—C12—C13 −175.2 (3)
C4—C8—C9—C7 3.7 (4) C4—C5—C6—C7 0.8 (5)
N1—C8—C4—C5 177.1 (3) C9—C7—C6—C5 0.2 (5)
C9—C8—C4—C5 −2.7 (4) C1—C2—C3—C4 0.4 (5)
N1—C8—C4—C3 −2.5 (4) C5—C4—C3—C2 −178.1 (3)
C9—C8—C4—C3 177.6 (2) C8—C4—C3—C2 1.5 (4)
C12—C11—C16—C15 −1.4 (5) C8—N1—C1—C2 0.9 (5)
C10—C11—C16—C15 175.6 (3) C3—C2—C1—N1 −1.8 (5)
C18—C17—C14—C15 111.6 (4) C21—C22—C23—N2 54 (24)
C22—C17—C14—C15 −71.0 (4) C17—C22—C23—N2 −125 (23)
C18—C17—C14—C13 −68.1 (4) C17—C22—C21—C20 −0.5 (5)
C22—C17—C14—C13 109.3 (3) C23—C22—C21—C20 −179.0 (3)
O1—C9—C7—C6 178.1 (3) C22—C17—C18—C19 0.7 (5)
C8—C9—C7—C6 −2.5 (4) C14—C17—C18—C19 178.3 (3)
C3—C4—C5—C6 −179.8 (3) C22—C21—C20—C19 0.0 (5)
C8—C4—C5—C6 0.5 (4) C21—C20—C19—C18 0.9 (6)
C18—C17—C22—C21 0.1 (4) C17—C18—C19—C20 −1.3 (6)
C14—C17—C22—C21 −177.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2278).

References

  1. Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16–21.
  2. Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.
  3. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803. [DOI] [PubMed]
  6. Ye, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chan, P. W. H., Zhu, J. S., Huang, S. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 128, 6554–6556. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012724/jh2278sup1.cif

e-67-o1209-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012724/jh2278Isup2.hkl

e-67-o1209-Isup2.hkl (201.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES