Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1230–o1231. doi: 10.1107/S160053681101467X

Methyl 4-{[6-(4-bromo­phen­yl)-3-oxo-2,3,4,5-tetra­hydro­pyridazin-4-yl]methyl}benzoate

Adailton J Bortoluzzi a,*, Luciana B P Souza a, Antônio C Joussef a, Emerson Meyer b
PMCID: PMC3089372  PMID: 21754527

Abstract

The structure of the title compound, C19H17BrN2O3, consists of two cyclic groups, viz. 4-(meth­oxy­carbon­yl)phenyl and 6-(4-bromo­phen­yl)-3-oxo-2,3,4,5-dihydro­pyridazin-4-yl, which are linked by a methyl­ene spacer. The pyridazine ring is twisted and the dihedral angle between its mean plane and that of the bromo­phenyl mean plane is 17.2 (2)°. The 4-(meth­oxy­carbon­yl)phenyl group shows a quasi-planar conformation, where the dihedral angle between the mean planes of the phenyl ring and carboxyl­ate ester group is 7.9 (4)°. Centrosymmetric inter­molecular N—H⋯O hydrogen bonds form dimers. These are linked by C—Br⋯O=C inter­actions [Br⋯O = 3.10 (1) Å] to form a one-dimensional polymeric structure running along the [1Inline graphic0] direction.

Related literature

For specific details concerning organic reactions and synthetic procedures for 4,5-diihydro-3(2H)-pyridazinone derivatives, see: Meyer et al. (2004). For the biological activity of heterocyclic compounds containing the 3(2H)-pyridazinone group, see: Sayed et al. (2002); Katrusiak & Baloniak (1994); Dogruer et al. (2003); Pieretti et al. (2006); Cao et al. (2003); Piaz et al. (1994); Xu et al. (2008); Giovannoni et al. (2007); Coelho et al. (2007); Malinka et al. (2003); Wexler et al. (1996); Barbaro et al., (2001); Vergelli et al. (2007); Abudshait (2007). For related structures, see: Zhang et al. (2006); Zhou & Zhou (2007). For C—Br⋯O inter­actions, see: Voronina et al. (2009)graphic file with name e-67-o1230-scheme1.jpg

Experimental

Crystal data

  • C19H17BrN2O3

  • M r = 401.26

  • Triclinic, Inline graphic

  • a = 5.991 (1) Å

  • b = 8.958 (1) Å

  • c = 17.531 (2) Å

  • α = 99.502 (11)°

  • β = 95.241 (12)°

  • γ = 105.499 (10)°

  • V = 885.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.50 × 0.33 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan [North et al. (1968) and PLATON (Spek, 2009)] T min = 0.567, T max = 0.978

  • 3368 measured reflections

  • 3151 independent reflections

  • 2033 reflections with I > 2σ(I)

  • R int = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.098

  • S = 1.03

  • 3151 reflections

  • 237 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101467X/lw2061sup1.cif

e-67-o1230-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101467X/lw2061Isup2.hkl

e-67-o1230-Isup2.hkl (151.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101467X/lw2061Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 2.08 2.910 (4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.

supplementary crystallographic information

Comment

Heterocyclic compounds containing 3-(2H)-pyridazinone moiety in their structures have attracted a great deal of attention due to their wide spectrum of biological activity such as antimicrobial (Sayed et al., 2002; Katrusiak & Baloniak, 1994), anti-inflammatory (Dogruer et al., 2003; Pieretti et al., 2006), antifeedant (Cao et al., 2003), herbicidal (Piaz et al., 1994; Xu et al., 2008), antiplatelet (Giovannoni et al., 2007; Coelho et al., 2007), anticancer (Malinka et al., 2003), antihypertensive (Wexler et al., 1996; Barbaro et al., 2001), antinociceptive agent (Giovannoni et al., 2007; Vergelli et al., 2007) and other biological and pharmacological properties (Abudshait, 2007). In our study toward the synthesis of dihydropyridazinones as potential candidates for antihypertensive activity the structure of methyl 4-[6-(4-bromophenyl)-3-oxo-2,3,4,5-dihydropyridazin-4-ylmethyl]benzoate has been determined.

The structure of the title compound consists of two cyclic moieties, 4-(methoxycarbonyl)phenyl and 6-(4-bromophenyl)-3-oxo-2,3,4,5-dihydropyridazin-4-yl, which are linked by methylene spacer (Fig. 1). The pyridazinyl ring is twisted, the greatest deviation is observed for carbon atoms C5 and the disordered C6A and C6B atoms, which are -0.0674 (8), 0.479 (5) and -0.415 (12) Å, respectively, out of the mean plane of all atoms in the ring. The dihedral angle between the mean plane of this ring and that of the bromophenyl mean plane is 17.2 (2)°. The 4-(Methoxycarbonyl)phenyl moiety shows quasi-planar conformation, where the dihedral angle between the mean planes of the phenyl ring and carboxylate ester group is 7.9 (4)°. Intermolecular N3—H3N···O1 hydrogen bonds form centrosymmetric dimers (Fig. 2). Each dimer is linked to two neighboring dimers through C4═O1···Br—C14 interactions (Voronina et al., 2009) forming an one-dimensional polymeric structure along [120] direction (Fig. 3). In addition, packing analysis shows that the molecules are perfectly stacked along [100] direction (Fig. 4).

Experimental

The title compound was synthesized according to a previously described method (Meyer et al., 2004). A careful crystallization from methanol/water (1:1 v/v) provided colorless crystals suitable for X-ray analysis.

Refinement

H atoms were placed at their idealized positions with distances of 0.93, 0.98, 0.97 and 0.96 Å and Uiso fixed at 1.2 and 1.5 times Ueq of the preceding atom for C—HAr, CH, CH2 and CH3, respectively. H atom bonded to N atom at the pyridazinyl ring was found from Fourier difference map and treated with riding model and its Uiso fixed at 1.2 times Ueq of the parent atom. One C atom (C6) of the pyridazinyl ring is disordered over two alternative positions. The position of the disordered atoms were restrained and the occupancies were refined giving 0.696 (16) and 0.304 (16) for C6A and C6B, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Dimeric structure formed by hydrogen bonds. Symmetry code: -x + 3, -y + 1, -z + 1

Fig. 3.

Fig. 3.

One-dimensional polymeric structure formed by C—Br···O=C interactions. Symmetry code: -2 + x, -1 + y, z

Fig. 4.

Fig. 4.

Packing showing the molecules staked along [100] direction.

Crystal data

C19H17BrN2O3 Z = 2
Mr = 401.26 F(000) = 408
Triclinic, P1 Dx = 1.506 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 5.991 (1) Å Cell parameters from 25 reflections
b = 8.958 (1) Å θ = 8.2–13.4°
c = 17.531 (2) Å µ = 2.34 mm1
α = 99.502 (11)° T = 293 K
β = 95.241 (12)° Block, colourless
γ = 105.499 (10)° 0.50 × 0.33 × 0.13 mm
V = 885.1 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 2033 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
graphite θmax = 25.1°, θmin = 2.4°
ω/2θ scans h = −7→6
Absorption correction: ψ scan [PLATON (Spek, 2009) and North et al. (1968)] k = 0→10
Tmin = 0.567, Tmax = 0.978 l = −20→20
3368 measured reflections 3 standard reflections every 200 reflections
3151 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.047P)2 + 0.1645P] where P = (Fo2 + 2Fc2)/3
3151 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.28 e Å3
4 restraints Δρmin = −0.36 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br −0.15083 (6) −0.19522 (5) 0.35018 (3) 0.06171 (18)
O1 1.4961 (4) 0.5375 (3) 0.40556 (15) 0.0636 (7)
O2 0.7322 (7) 0.1015 (5) −0.0912 (2) 0.1113 (14)
O3 0.5072 (5) 0.2549 (4) −0.05798 (17) 0.0862 (10)
N2 0.9579 (5) 0.2989 (3) 0.44336 (17) 0.0477 (7)
N3 1.1821 (5) 0.4010 (3) 0.45053 (17) 0.0495 (7)
H3 1.2594 0.4324 0.4969 0.059*
C1 0.8308 (5) 0.2698 (4) 0.37748 (19) 0.0441 (9)
C4 1.2910 (6) 0.4559 (4) 0.3928 (2) 0.0478 (9)
C5 1.1519 (6) 0.4051 (6) 0.3128 (2) 0.0748 (13)
H5A 1.1718 0.3001 0.2959 0.090* 0.696 (16)
H5B 1.0661 0.4828 0.3257 0.090* 0.304 (16)
C6A 0.9009 (7) 0.3670 (12) 0.3173 (5) 0.053 (2) 0.696 (16)
H61A 0.8150 0.3097 0.2667 0.063* 0.696 (16)
H62A 0.8582 0.4644 0.3297 0.063* 0.696 (16)
C6B 0.936 (2) 0.2760 (19) 0.3030 (5) 0.049 (5) 0.304 (16)
H61B 0.9684 0.1765 0.2852 0.059* 0.304 (16)
H62B 0.8234 0.2891 0.2630 0.059* 0.304 (16)
C11 0.5908 (5) 0.1601 (4) 0.3696 (2) 0.0430 (8)
C12 0.4841 (6) 0.1357 (4) 0.4353 (2) 0.0485 (9)
H12 0.5620 0.1913 0.4843 0.058*
C13 0.2661 (6) 0.0313 (4) 0.4295 (2) 0.0505 (9)
H13 0.1970 0.0163 0.4741 0.061*
C14 0.1509 (5) −0.0509 (4) 0.3570 (2) 0.0459 (9)
C15 0.2488 (6) −0.0279 (4) 0.2906 (2) 0.0505 (9)
H15 0.1680 −0.0826 0.2418 0.061*
C16 0.4696 (6) 0.0776 (4) 0.2968 (2) 0.0489 (9)
H16 0.5370 0.0932 0.2520 0.059*
C20 1.2585 (6) 0.4905 (5) 0.2539 (2) 0.0636 (11)
H20A 1.4172 0.4836 0.2532 0.076*
H20B 1.2664 0.6013 0.2686 0.076*
C21 1.1228 (6) 0.4253 (5) 0.1732 (2) 0.0578 (10)
C22 1.1646 (7) 0.3022 (6) 0.1252 (3) 0.0761 (13)
H22 1.2879 0.2642 0.1408 0.091*
C23 1.0265 (8) 0.2329 (6) 0.0538 (3) 0.0768 (13)
H23 1.0584 0.1494 0.0220 0.092*
C24 0.8429 (7) 0.2863 (5) 0.0295 (2) 0.0592 (10)
C25 0.8033 (7) 0.4128 (5) 0.0761 (2) 0.0659 (11)
H25 0.6828 0.4528 0.0598 0.079*
C26 0.9426 (8) 0.4809 (5) 0.1475 (2) 0.0679 (12)
H26 0.9136 0.5663 0.1787 0.082*
C27 0.6928 (8) 0.2035 (6) −0.0460 (3) 0.0723 (12)
C28 0.3469 (9) 0.1770 (7) −0.1296 (3) 0.116 (2)
H28A 0.2053 0.2075 −0.1280 0.173*
H28B 0.3113 0.0645 −0.1344 0.173*
H28C 0.4184 0.2075 −0.1736 0.173*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0414 (2) 0.0561 (3) 0.0743 (3) −0.00418 (16) 0.00693 (18) 0.00672 (19)
O1 0.0418 (14) 0.0744 (18) 0.0551 (17) −0.0138 (13) −0.0059 (12) 0.0156 (14)
O2 0.117 (3) 0.150 (3) 0.065 (2) 0.070 (3) −0.010 (2) −0.025 (2)
O3 0.080 (2) 0.117 (3) 0.058 (2) 0.046 (2) −0.0112 (16) −0.0057 (18)
N2 0.0352 (15) 0.0527 (18) 0.0452 (19) 0.0005 (13) −0.0002 (14) 0.0052 (14)
N3 0.0373 (15) 0.0555 (18) 0.0426 (18) −0.0010 (13) −0.0034 (13) 0.0021 (15)
C1 0.0352 (18) 0.049 (2) 0.046 (2) 0.0084 (16) 0.0029 (17) 0.0105 (17)
C4 0.0378 (19) 0.052 (2) 0.046 (2) 0.0031 (16) −0.0008 (17) 0.0083 (18)
C5 0.049 (2) 0.103 (3) 0.049 (3) −0.016 (2) −0.0062 (19) 0.021 (2)
C6A 0.041 (3) 0.051 (5) 0.060 (4) −0.004 (3) −0.004 (3) 0.027 (4)
C6B 0.051 (8) 0.041 (9) 0.045 (8) −0.001 (7) −0.003 (6) 0.010 (7)
C11 0.0337 (17) 0.047 (2) 0.046 (2) 0.0069 (15) 0.0014 (16) 0.0103 (17)
C12 0.0414 (19) 0.055 (2) 0.040 (2) 0.0050 (17) 0.0025 (16) 0.0011 (17)
C13 0.0406 (19) 0.055 (2) 0.051 (2) 0.0053 (17) 0.0113 (17) 0.0082 (19)
C14 0.0328 (17) 0.045 (2) 0.055 (2) 0.0027 (15) 0.0058 (16) 0.0088 (18)
C15 0.0422 (19) 0.054 (2) 0.044 (2) 0.0036 (17) −0.0019 (17) −0.0005 (18)
C16 0.0420 (19) 0.061 (2) 0.040 (2) 0.0066 (17) 0.0063 (16) 0.0113 (18)
C20 0.049 (2) 0.073 (3) 0.057 (3) −0.005 (2) 0.0006 (19) 0.020 (2)
C21 0.045 (2) 0.071 (3) 0.050 (3) −0.0007 (19) 0.0047 (19) 0.021 (2)
C22 0.059 (3) 0.111 (4) 0.064 (3) 0.035 (3) 0.006 (2) 0.017 (3)
C23 0.078 (3) 0.102 (4) 0.054 (3) 0.040 (3) 0.009 (2) 0.003 (3)
C24 0.060 (2) 0.078 (3) 0.042 (2) 0.022 (2) 0.0082 (19) 0.016 (2)
C25 0.070 (3) 0.071 (3) 0.056 (3) 0.024 (2) −0.001 (2) 0.013 (2)
C26 0.082 (3) 0.062 (3) 0.053 (3) 0.016 (2) −0.001 (2) 0.008 (2)
C27 0.079 (3) 0.095 (4) 0.044 (3) 0.031 (3) 0.009 (2) 0.009 (3)
C28 0.102 (4) 0.165 (6) 0.068 (4) 0.056 (4) −0.028 (3) −0.018 (4)

Geometric parameters (Å, °)

Br—C14 1.901 (3) C12—C13 1.372 (5)
Br—O1i 3.096 (2) C12—H12 0.9300
O1—C4 1.229 (4) C13—C14 1.376 (5)
O2—C27 1.196 (5) C13—H13 0.9300
O3—C27 1.325 (5) C14—C15 1.372 (5)
O3—C28 1.456 (5) C15—C16 1.388 (4)
N2—C1 1.271 (4) C15—H15 0.9300
N2—N3 1.389 (4) C16—H16 0.9300
N3—C4 1.343 (4) C20—C21 1.505 (5)
N3—H3 0.8600 C20—H20A 0.9700
C1—C11 1.488 (4) C20—H20B 0.9700
C1—C6A 1.495 (4) C21—C22 1.366 (6)
C1—C6B 1.504 (5) C21—C26 1.375 (6)
C4—C5 1.498 (5) C22—C23 1.385 (6)
C5—C6B 1.462 (5) C22—H22 0.9300
C5—C6A 1.463 (4) C23—C24 1.373 (5)
C5—C20 1.477 (5) C23—H23 0.9300
C5—H5A 0.9800 C24—C25 1.371 (6)
C5—H5B 0.9800 C24—C27 1.487 (6)
C6A—H5B 1.2052 C25—C26 1.386 (6)
C6A—H61A 0.9700 C25—H25 0.9300
C6A—H62A 0.9700 C26—H26 0.9300
C6B—H61B 0.9700 C28—H28A 0.9600
C6B—H62B 0.9700 C28—H28B 0.9600
C11—C12 1.388 (5) C28—H28C 0.9600
C11—C16 1.391 (5)
C14—Br—O1i 152.32 (12) C12—C13—C14 119.2 (3)
C27—O3—C28 116.1 (4) C12—C13—H13 120.4
C1—N2—N3 116.8 (3) C14—C13—H13 120.4
C4—N3—N2 127.0 (3) C15—C14—C13 121.0 (3)
C4—N3—H3 116.5 C15—C14—Br 120.3 (3)
N2—N3—H3 116.5 C13—C14—Br 118.7 (3)
N2—C1—C11 116.9 (3) C14—C15—C16 119.4 (3)
N2—C1—C6A 120.7 (4) C14—C15—H15 120.3
C11—C1—C6A 121.2 (3) C16—C15—H15 120.3
N2—C1—C6B 121.5 (7) C15—C16—C11 120.5 (3)
C11—C1—C6B 115.6 (4) C15—C16—H16 119.7
O1—C4—N3 121.0 (3) C11—C16—H16 119.7
O1—C4—C5 122.8 (3) C5—C20—C21 112.3 (3)
N3—C4—C5 116.1 (3) C5—C20—H20A 109.1
C6B—C5—C20 129.0 (5) C21—C20—H20A 109.1
C6A—C5—C20 122.3 (4) C5—C20—H20B 109.1
C6B—C5—C4 116.4 (6) C21—C20—H20B 109.1
C6A—C5—C4 110.8 (4) H20A—C20—H20B 107.9
C20—C5—C4 114.6 (3) C22—C21—C26 117.9 (4)
C6A—C5—H5A 101.8 C22—C21—C20 121.1 (4)
C20—C5—H5A 101.8 C26—C21—C20 120.9 (4)
C4—C5—H5A 101.8 C21—C22—C23 121.2 (4)
C6B—C5—H5B 90.6 C21—C22—H22 119.4
C20—C5—H5B 90.6 C23—C22—H22 119.4
C4—C5—H5B 90.6 C24—C23—C22 120.6 (4)
H5A—C5—H5B 156.6 C24—C23—H23 119.7
C5—C6A—C1 112.7 (4) C22—C23—H23 119.7
C1—C6A—H5B 126.3 C25—C24—C23 118.8 (4)
C5—C6A—H61A 109.1 C25—C24—C27 122.6 (4)
C1—C6A—H61A 109.1 C23—C24—C27 118.7 (4)
H5B—C6A—H61A 123.3 C24—C25—C26 120.0 (4)
C5—C6A—H62A 109.1 C24—C25—H25 120.0
C1—C6A—H62A 109.1 C26—C25—H25 120.0
H61A—C6A—H62A 107.8 C21—C26—C25 121.5 (4)
C5—C6B—C1 112.2 (5) C21—C26—H26 119.2
C5—C6B—H61B 109.2 C25—C26—H26 119.2
C1—C6B—H61B 109.2 O2—C27—O3 123.1 (4)
C5—C6B—H62B 109.2 O2—C27—C24 124.5 (4)
C1—C6B—H62B 109.2 O3—C27—C24 112.4 (4)
H61B—C6B—H62B 107.9 O3—C28—H28A 109.5
C12—C11—C16 118.3 (3) O3—C28—H28B 109.5
C12—C11—C1 120.5 (3) H28A—C28—H28B 109.5
C16—C11—C1 121.2 (3) O3—C28—H28C 109.5
C13—C12—C11 121.4 (3) H28A—C28—H28C 109.5
C13—C12—H12 119.3 H28B—C28—H28C 109.5
C11—C12—H12 119.3
C1—N2—N3—C4 −9.7 (5) C12—C13—C14—Br 179.9 (3)
N3—N2—C1—C11 179.8 (3) O1i—Br—C14—C15 137.0 (3)
N3—N2—C1—C6A −12.7 (6) O1i—Br—C14—C13 −44.1 (5)
N3—N2—C1—C6B 28.2 (10) C13—C14—C15—C16 1.3 (6)
N2—N3—C4—O1 −175.0 (3) Br—C14—C15—C16 −179.8 (3)
N2—N3—C4—C5 2.1 (6) C14—C15—C16—C11 −0.3 (6)
O1—C4—C5—C6B 164.1 (11) C12—C11—C16—C15 −0.8 (5)
N3—C4—C5—C6B −13.0 (11) C1—C11—C16—C15 178.0 (3)
O1—C4—C5—C6A −157.3 (5) C6B—C5—C20—C21 −2.8 (14)
N3—C4—C5—C6A 25.7 (6) C6A—C5—C20—C21 −46.4 (8)
O1—C4—C5—C20 −14.0 (6) C4—C5—C20—C21 174.9 (4)
N3—C4—C5—C20 168.9 (4) C5—C20—C21—C22 −87.0 (5)
C20—C5—C6A—C1 175.7 (5) C5—C20—C21—C26 88.7 (5)
C4—C5—C6A—C1 −44.3 (9) C26—C21—C22—C23 −1.5 (6)
N2—C1—C6A—C5 40.7 (10) C20—C21—C22—C23 174.3 (4)
C11—C1—C6A—C5 −152.3 (5) C21—C22—C23—C24 −0.2 (7)
C20—C5—C6B—C1 −154.1 (8) C22—C23—C24—C25 2.0 (7)
C4—C5—C6B—C1 28.1 (19) C22—C23—C24—C27 −177.2 (4)
N2—C1—C6B—C5 −38.1 (19) C23—C24—C25—C26 −2.1 (6)
C11—C1—C6B—C5 169.9 (10) C27—C24—C25—C26 177.1 (4)
N2—C1—C11—C12 21.7 (5) C22—C21—C26—C25 1.5 (6)
C6A—C1—C11—C12 −145.8 (6) C20—C21—C26—C25 −174.3 (4)
C6B—C1—C11—C12 175.0 (11) C24—C25—C26—C21 0.3 (7)
N2—C1—C11—C16 −157.2 (4) C28—O3—C27—O2 1.4 (7)
C6A—C1—C11—C16 35.4 (7) C28—O3—C27—C24 −178.3 (4)
C6B—C1—C11—C16 −3.8 (11) C25—C24—C27—O2 173.6 (5)
C16—C11—C12—C13 1.0 (5) C23—C24—C27—O2 −7.2 (7)
C1—C11—C12—C13 −177.9 (3) C25—C24—C27—O3 −6.6 (6)
C11—C12—C13—C14 0.0 (6) C23—C24—C27—O3 172.6 (4)
C12—C13—C14—C15 −1.2 (6)

Symmetry codes: (i) x−2, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1ii 0.86 2.08 2.910 (4) 162
C14—Br···O1i 1.901 (3) 3.096 (2) ? 152.32 (12)

Symmetry codes: (ii) −x+3, −y+1, −z+1; (i) x−2, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2061).

References

  1. Abudshait, S. A. (2007). Molecules, 12, 25–42. [DOI] [PMC free article] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Barbaro, R., Betti, L., Botta, M., Corelli, F., Giannaccini, G., Maccari, L., Manetti, F., Strappaghetti, G. & Corsano, S. (2001). J. Med. Chem. 44, 2118–21332. [DOI] [PubMed]
  4. Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155. [DOI] [PubMed]
  5. Coelho, A., Raviña, E., Fraiz, N., Yáñez, M., Laguna, R., Cano, E. & Sotelo, E. (2007). J. Med. Chem. 50, 6476–6484. [DOI] [PubMed]
  6. Dogruer, D. S., Sahin, M. F., Kupeli, E. & Yesilada, E. (2003). Turk. J. Chem. 27, 727–738.
  7. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  8. Giovannoni, M. P., Cesari, N., Vergelli, C., Graziano, A., Biancalani, C., Biagini, P., Ghelardini, C., Vivoli, E. & Piaz, V. D. (2007). J. Med. Chem. 50, 3945–3953. [DOI] [PubMed]
  9. Katrusiak, A. & Baloniak, S. (1994). Tetrahedron, 50, 12933–12940.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Malinka, W., Redzicka, A. & Losach, O. (2003). Il Farmaco, 59, 457–462. [DOI] [PubMed]
  12. Meyer, E., Joussef, A. C., Gallardo, H. & de Souza, L. de B. P. (2004). Synth. Commun. 34, 783–793.
  13. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  14. Piaz, V. D., Ciciani, G. & Giovannoni, M. P. (1994). Synthesis, pp. 669–671.
  15. Pieretti, S., Dominici, L., Giannuario, A. D., Cesari, N. & Piaz, V. D. (2006). Life Sci. 79, 791–800. [DOI] [PubMed]
  16. Sayed, G. H., Sayed, M. A., Mahmoud, M. R. & Shaaban, S. S. (2002). Egypt. J. Chem. 45, 767–776.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Vergelli, C., Giovannoni, M. P., Pieretti, S., Giannuario, A. D., Piaz, V. D., Biagini, P., Biancalani, C., Graziano, A. & Cesari, N. (2007). Bioorg. Med. Chem. 15, 5563–5575. [DOI] [PubMed]
  21. Voronina, Yu. K., Saifina, L. F., Romanova, E. S., Lodochnikova, O. A. & Litvinov, I. A. (2009). J. Struct. Chem. 50, 588–591.
  22. Wexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. M. (1996). J. Med. Chem. 39, 625–656. [DOI] [PubMed]
  23. Xu, H., Hu, X.-H., Zou, X.-M., Liu, B., Zhu, Y.-Q., Wang, Y., Hu, F.-Z. & Uang, H.-Z. (2008). J. Agric. Food Chem. 56, 6567–6572. [DOI] [PubMed]
  24. Zhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, o2999–o3000.
  25. Zhou, Z.-Z. & Zhou, H.-B. (2007). Acta Cryst. E63, o2512.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101467X/lw2061sup1.cif

e-67-o1230-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101467X/lw2061Isup2.hkl

e-67-o1230-Isup2.hkl (151.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101467X/lw2061Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES