Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Feb 11;21(3):649–655. doi: 10.1093/nar/21.3.649

Zinc finger-like motifs in rat ribosomal proteins S27 and S29.

Y L Chan 1, K Suzuki 1, J Olvera 1, I G Wool 1
PMCID: PMC309165  PMID: 8441676

Abstract

The primary structures of the rat 40S ribosomal subunit proteins S27 and S29 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed by determination of amino acid sequences in the proteins. Ribosomal protein S27 has 83 amino acids and the molecular weight is 9,339. Hybridization of cDNA to digests of nuclear DNA suggests that there are 4-6 copies of the S27 gene; the mRNA for the protein is about 620 nucleotides in length. Ribosomal protein S29 has 55 amino acids and the molecular weight is 6,541. There are 14-17 copies of the S29 gene and its mRNA is about 500 nucleotides in length. Rat ribosomal protein S29 is related to several members of the archaebacterial and eubacterial S14 family of ribosomal proteins. S27 and S29 have zinc finger-like motifs as do other proteins from eukaryotic, archaebacterial, eubacterial, and mitochondrial ribosomes. Moreover, ribosomes and ribosomal subunits appear to contain zinc and iron as well.

Full text

PDF
649

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auer J., Spicker G., Böck A. Organization and structure of the Methanococcus transcriptional unit homologous to the Escherichia coli "spectinomycin operon". Implications for the evolutionary relationship of 70 S and 80 S ribosomes. J Mol Biol. 1989 Sep 5;209(1):21–36. doi: 10.1016/0022-2836(89)90167-8. [DOI] [PubMed] [Google Scholar]
  2. Baker R. T., Board P. G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 1991 Mar 11;19(5):1035–1040. doi: 10.1093/nar/19.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg J. M. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. doi: 10.1126/science.2421409. [DOI] [PubMed] [Google Scholar]
  4. Berg J. M. Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem. 1990;19:405–421. doi: 10.1146/annurev.bb.19.060190.002201. [DOI] [PubMed] [Google Scholar]
  5. Chan Y. L., Devi K. R., Olvera J., Wool I. G. The primary structure of rat ribosomal protein S3. Arch Biochem Biophys. 1990 Dec;283(2):546–550. doi: 10.1016/0003-9861(90)90682-o. [DOI] [PubMed] [Google Scholar]
  6. Chan Y. L., Lin A., McNally J., Wool I. G. The primary structure of rat ribosomal protein L5. A comparison of the sequence of amino acids in the proteins that interact with 5 S rRNA. J Biol Chem. 1987 Sep 15;262(26):12879–12886. [PubMed] [Google Scholar]
  7. Chan Y. L., Wool I. G. The primary structure of rat ribosomal protein S6. J Biol Chem. 1988 Feb 25;263(6):2891–2896. [PubMed] [Google Scholar]
  8. Collatz E., Ulbrich N., Tsurugi K., Lightfoot H. N., MacKinlay W., Lin A., Wool I. G. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 40 S ribosomal subunit proteins Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and S29. J Biol Chem. 1977 Dec 25;252(24):9071–9080. [PubMed] [Google Scholar]
  9. Collatz E., Wool I. G., Lin A., Stöffler G. The isolation of eukaryotic ribosomal proteins. The purification and characterization of the 40 S ribosomal subunit proteins S2, S3, S4, S5, S6, S7, S8, S9, S13, S23/S24, S27, and S28. J Biol Chem. 1976 Aug 10;251(15):4666–4672. [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flinta C., Persson B., Jörnvall H., von Heijne G. Sequence determinants of cytosolic N-terminal protein processing. Eur J Biochem. 1986 Jan 2;154(1):193–196. doi: 10.1111/j.1432-1033.1986.tb09378.x. [DOI] [PubMed] [Google Scholar]
  12. Furukawa T., Taketani S., Kohno H., Tokunaga R. A newly identified iron-binding protein in rat liver: purification and characterization. Biochem Biophys Res Commun. 1991 Nov 27;181(1):409–415. doi: 10.1016/s0006-291x(05)81434-2. [DOI] [PubMed] [Google Scholar]
  13. Furukawa T., Uchiumi T., Tokunaga R., Taketani S. Ribosomal protein P2, a novel iron-binding protein. Arch Biochem Biophys. 1992 Oct;298(1):182–186. doi: 10.1016/0003-9861(92)90110-i. [DOI] [PubMed] [Google Scholar]
  14. Glück A., Chan Y. L., Lin A., Wool I. G. The primary structure of rat ribosomal protein S10. Eur J Biochem. 1989 Jun 1;182(1):105–109. doi: 10.1111/j.1432-1033.1989.tb14805.x. [DOI] [PubMed] [Google Scholar]
  15. Henkin T. M., Moon S. H., Mattheakis L. C., Nomura M. Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis: comparison with the spc operon of Escherichia coli. Nucleic Acids Res. 1989 Sep 25;17(18):7469–7486. doi: 10.1093/nar/17.18.7469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kerlavage A. R., Cooperman B. S. Reconstitution of Escherichia coli ribosomes containing puromycin-modified S14: functional effects of the photoaffinity labeling of a protein essential for tRNA binding. Biochemistry. 1986 Dec 2;25(24):8002–8010. doi: 10.1021/bi00372a032. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  18. Ladiges W. C., Raff R. F., Brown S., Deeg H. J., Storb R. The canine major histocompatibility complex. Supertypic specificities defined by the primed lymphocyte test (PLT). Immunogenetics. 1984;19(4):359–365. doi: 10.1007/BF00345410. [DOI] [PubMed] [Google Scholar]
  19. Levy S., Avni D., Hariharan N., Perry R. P., Meyuhas O. Oligopyrimidine tract at the 5' end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3319–3323. doi: 10.1073/pnas.88.8.3319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin T. E., Wool I. G. Active hybrid 80 s particles formed from subunits of rat, rabbit and protozoan (Tetrahymena pyriformis) ribosomes. J Mol Biol. 1969 Jul 14;43(1):151–161. doi: 10.1016/0022-2836(69)90085-0. [DOI] [PubMed] [Google Scholar]
  21. Miller J., McLachlan A. D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Myers A. M., Crivellone M. D., Tzagoloff A. Assembly of the mitochondrial membrane system. MRP1 and MRP2, two yeast nuclear genes coding for mitochondrial ribosomal proteins. J Biol Chem. 1987 Mar 5;262(7):3388–3397. [PubMed] [Google Scholar]
  23. Ohkubo S., Muto A., Kawauchi Y., Yamao F., Osawa S. The ribosomal protein gene cluster of Mycoplasma capricolum. Mol Gen Genet. 1987 Dec;210(2):314–322. doi: 10.1007/BF00325700. [DOI] [PubMed] [Google Scholar]
  24. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  25. Powers T., Stern S., Changchien L. M., Noller H. F. Probing the assembly of the 3' major domain of 16 S rRNA. Interactions involving ribosomal proteins S2, S3, S10, S13 and S14. J Mol Biol. 1988 Jun 20;201(4):697–716. doi: 10.1016/0022-2836(88)90468-8. [DOI] [PubMed] [Google Scholar]
  26. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  27. Ramakrishnan V., Graziano V., Capel M. S. A role for proteins S3 and S14 in the 30 S ribosomal subunit. J Biol Chem. 1986 Nov 15;261(32):15049–15052. [PubMed] [Google Scholar]
  28. Redman K. L., Rechsteiner M. Identification of the long ubiquitin extension as ribosomal protein S27a. Nature. 1989 Mar 30;338(6214):438–440. doi: 10.1038/338438a0. [DOI] [PubMed] [Google Scholar]
  29. Schwabe J. W., Rhodes D. Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem Sci. 1991 Aug;16(8):291–296. doi: 10.1016/0968-0004(91)90121-b. [DOI] [PubMed] [Google Scholar]
  30. Slater A. F., Swiggard W. J., Orton B. R., Flitter W. D., Goldberg D. E., Cerami A., Henderson G. B. An iron-carboxylate bond links the heme units of malaria pigment. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):325–329. doi: 10.1073/pnas.88.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stern S., Powers T., Changchien L. M., Noller H. F. RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science. 1989 May 19;244(4906):783–790. doi: 10.1126/science.2658053. [DOI] [PubMed] [Google Scholar]
  32. Tanaka T., Aoyama Y., Chan Y. L., Wool I. G. The primary structure of rat ribosomal protein L37a. Eur J Biochem. 1989 Jul 15;183(1):15–18. doi: 10.1111/j.1432-1033.1989.tb14889.x. [DOI] [PubMed] [Google Scholar]
  33. Wool I. G., Chan Y. L., Glück A., Suzuki K. The primary structure of rat ribosomal proteins P0, P1, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie. 1991 Jul-Aug;73(7-8):861–870. doi: 10.1016/0300-9084(91)90127-m. [DOI] [PubMed] [Google Scholar]
  34. You Q. M., Veldhoen N., Baudin F., Romaniuk P. J. Mutations in 5S DNA and 5S RNA have different effects on the binding of Xenopus transcription factor IIIA. Biochemistry. 1991 Mar 5;30(9):2495–2500. doi: 10.1021/bi00223a028. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES