Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Feb 11;21(3):681–686. doi: 10.1093/nar/21.3.681

Restriction endonuclease cleavage of 5-methyl-deoxycytosine hemimethylated DNA at high enzyme-to-substrate ratios.

P S Nelson 1, T S Papas 1, C W Schweinfest 1
PMCID: PMC309169  PMID: 8441677

Abstract

We have investigated the ability of a large number of restriction enzymes to digest non-canonically hemimethylated DNA at high enzyme-to-substrate ratios. A single-stranded unmethylated phagemid was used as a template to complete synthesis of the second strand using 5-methyl-dCTP to substitute for all the deoxycytosine residues. A fragment of this double-stranded hemimethylated DNA which contains the multiple cloning site region was used as a substrate. For all the enzymes tested, at least some degree of protection from digestion is observed. Sites completely protected from digestion by their cognate enzymes are SalI, BstXI, SacI, SacII, SmaI, SstI, XhoI, PstI, HinfI, BamHI and AccI. Sites partially protected from digestion by their cognate enzymes are XbaI, HindIII, KpnI, SpeI, ClaI, EcoRI and PvuII. Knowledge of the sensitivity of commonly used restriction enzymes to hemimethylated substrates is useful for several applications, which will be discussed.

Full text

PDF
681

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alves J., Pingoud A., Haupt W., Langowski J., Peters F., Maass G., Wolff C. The influence of sequences adjacent to the recognition site on the cleavage of oligodeoxynucleotides by the EcoRI endonuclease. Eur J Biochem. 1984 Apr 2;140(1):83–92. doi: 10.1111/j.1432-1033.1984.tb08069.x. [DOI] [PubMed] [Google Scholar]
  2. Armstrong K. A., Bauer W. R. Site-dependent cleavage of pBR322 DNA by restriction endonuclease HinfI. Nucleic Acids Res. 1983 Jun 25;11(12):4109–4126. doi: 10.1093/nar/11.12.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bird A. P. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. doi: 10.1038/321209a0. [DOI] [PubMed] [Google Scholar]
  4. Bird A. P. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J Mol Biol. 1978 Jan 5;118(1):49–60. doi: 10.1016/0022-2836(78)90243-7. [DOI] [PubMed] [Google Scholar]
  5. Butkus V., Petrauskiene L., Maneliene Z., Klimasauskas S., Laucys V., Janulaitis A. Cleavage of methylated CCCGGG sequences containing either N4-methylcytosine or 5-methylcytosine with MspI, HpaII, SmaI, XmaI and Cfr9I restriction endonucleases. Nucleic Acids Res. 1987 Sep 11;15(17):7091–7102. doi: 10.1093/nar/15.17.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colasanti J., Sundaresan V. Cytosine methylated DNA synthesized by Taq polymerase used to assay methylation sensitivity of restriction endonuclease HinfI. Nucleic Acids Res. 1991 Jan 25;19(2):391–394. doi: 10.1093/nar/19.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Comb M., Goodman H. M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990 Jul 11;18(13):3975–3982. doi: 10.1093/nar/18.13.3975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehrlich M., Wang R. Y. 5-Methylcytosine in eukaryotic DNA. Science. 1981 Jun 19;212(4501):1350–1357. doi: 10.1126/science.6262918. [DOI] [PubMed] [Google Scholar]
  9. Gruenbaum Y., Cedar H., Razin A. Restriction enzyme digestion of hemimethylated DNA. Nucleic Acids Res. 1981 Jun 11;9(11):2509–2515. doi: 10.1093/nar/9.11.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liu Q., Chen X., Zhao X., Chen Y., Chen D. The effect of methylation outside the recognition sequence of restriction endonuclease PvuII on its cleavage efficiency. Gene. 1992 Apr 1;113(1):89–93. doi: 10.1016/0378-1119(92)90673-d. [DOI] [PubMed] [Google Scholar]
  11. McClelland M., Nelson M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res. 1992 May 11;20 (Suppl):2145–2157. doi: 10.1093/nar/20.suppl.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nelson M., Christ C., Schildkraut I. Alteration of apparent restriction endonuclease recognition specificities by DNA methylases. Nucleic Acids Res. 1984 Jul 11;12(13):5165–5173. doi: 10.1093/nar/12.13.5165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Razin A., Riggs A. D. DNA methylation and gene function. Science. 1980 Nov 7;210(4470):604–610. doi: 10.1126/science.6254144. [DOI] [PubMed] [Google Scholar]
  14. Russell D. W., Zinder N. D. Hemimethylation prevents DNA replication in E. coli. Cell. 1987 Sep 25;50(7):1071–1079. doi: 10.1016/0092-8674(87)90173-5. [DOI] [PubMed] [Google Scholar]
  15. Russell G. J., Walker P. M., Elton R. A., Subak-Sharpe J. H. Doublet frequency analysis of fractionated vertebrate nuclear DNA. J Mol Biol. 1976 Nov;108(1):1–23. doi: 10.1016/s0022-2836(76)80090-3. [DOI] [PubMed] [Google Scholar]
  16. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tabor S., Richardson C. C. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J Biol Chem. 1989 Apr 15;264(11):6447–6458. [PubMed] [Google Scholar]
  18. Tasseron-de Jong J. G., Aker J., Giphart-Gassler M. The ability of the restriction endonuclease EcoRI to digest hemi-methylated versus fully cytosine-methylated DNA of the herpes tk promoter region. Gene. 1988 Dec 25;74(1):147–149. doi: 10.1016/0378-1119(88)90272-7. [DOI] [PubMed] [Google Scholar]
  19. Wilson G. G., Murray N. E. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627. doi: 10.1146/annurev.ge.25.120191.003101. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES