Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Feb 25;21(4):863–869. doi: 10.1093/nar/21.4.863

Endonuclease-sensitive DNA modifications induced by acetone and acetophenone as photosensitizers.

B Epe 1, H Henzl 1, W Adam 1, C R Saha-Möller 1
PMCID: PMC309218  PMID: 8383842

Abstract

Repair endonucleases, viz. endonuclease III, formamidopyrimidine-DNA glycosylase (FPG protein), endonuclease IV, exonuclease III and UV endonuclease, were used to analyse the modifications induced in bacteriophage PM2 DNA by 333 nm laser irradiation in the presence of acetone or acetophenone. In addition to pyrimidine dimers sensitive to UV endonuclease, 5,6-dihydropyrimidines (sensitive to endonuclease III) and base modifications sensitive to FPG protein were generated. The level of the last in the case of acetone was 50% and in the case of acetophenone 9% of the level of pyrimidine dimers. HPLC analysis of the bases excised by FPG protein revealed that least some of them were 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). In the damage induced by direct excitation of DNA at 254 nm, which was analysed for comparison, the number of FPG protein-sensitive base modifications was only 0.6% of that of the pyrimidine dimers. Mechanistic studies demonstrated that the formation of FPG protein-sensitive modifications did not involve singlet oxygen, as the damage was not increased in D2O as solvent. Hydroxyl radicals, superoxide and H2O2 were also not involved, since the relative number of single strand breaks and of sites of base loss (AP sites) was much lower than in the case of DNA damage induced by hydroxyl radicals and since the presence of SOD or catalase had no effect on the extent of the damage. However, the mechanism did involve an intermediate that was much more efficiently quenched by azide ions than the triplet excited carbonyl compounds and which was possibly a purine radical. Together, the data indicate that excited triplet carbonyl compounds react with DNA not only by triplet-triplet energy transfer yielding pyrimidine dimers, but also by electron transfer yielding preferentially base modifications sensitive to FPG protein, which include 8-hydroxyguanine.

Full text

PDF
863

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asahara H., Wistort P. M., Bank J. F., Bakerian R. H., Cunningham R. P. Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry. 1989 May 16;28(10):4444–4449. doi: 10.1021/bi00436a048. [DOI] [PubMed] [Google Scholar]
  2. Boiteux S., O'Connor T. R., Lederer F., Gouyette A., Laval J. Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J Biol Chem. 1990 Mar 5;265(7):3916–3922. [PubMed] [Google Scholar]
  3. Boorstein R. J., Hilbert T. P., Cadet J., Cunningham R. P., Teebor G. W. UV-induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Biochemistry. 1989 Jul 25;28(15):6164–6170. doi: 10.1021/bi00441a007. [DOI] [PubMed] [Google Scholar]
  4. Boorstein R. J., Hilbert T. P., Cunningham R. P., Teebor G. W. Formation and stability of repairable pyrimidine photohydrates in DNA. Biochemistry. 1990 Nov 20;29(46):10455–10460. doi: 10.1021/bi00498a004. [DOI] [PubMed] [Google Scholar]
  5. Brash D. E., Rudolph J. A., Simon J. A., Lin A., McKenna G. J., Baden H. P., Halperin A. J., Pontén J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10124–10128. doi: 10.1073/pnas.88.22.10124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charlier M., Helene C. Photochemical reactions of aromatic ketones with nucleic acids and their components. 3. Chain breakage and thymine dimerization in benzophenone photosensitized DNA. Photochem Photobiol. 1972 Jun;15(6):527–536. doi: 10.1111/j.1751-1097.1972.tb06265.x. [DOI] [PubMed] [Google Scholar]
  7. Cheng K. C., Cahill D. S., Kasai H., Nishimura S., Loeb L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992 Jan 5;267(1):166–172. [PubMed] [Google Scholar]
  8. Devasagayam T. P., Steenken S., Obendorf M. S., Schulz W. A., Sies H. Formation of 8-hydroxy(deoxy)guanosine and generation of strand breaks at guanine residues in DNA by singlet oxygen. Biochemistry. 1991 Jun 25;30(25):6283–6289. doi: 10.1021/bi00239a029. [DOI] [PubMed] [Google Scholar]
  9. Doetsch P. W., Cunningham R. P. The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res. 1990 Sep-Nov;236(2-3):173–201. doi: 10.1016/0921-8777(90)90004-o. [DOI] [PubMed] [Google Scholar]
  10. Eisenstark A. Mutagenic and lethal effects of near-ultraviolet radiation (290-400 nm) on bacteria and phage. Environ Mol Mutagen. 1987;10(3):317–337. doi: 10.1002/em.2850100311. [DOI] [PubMed] [Google Scholar]
  11. Epe B. Genotoxicity of singlet oxygen. Chem Biol Interact. 1991;80(3):239–260. doi: 10.1016/0009-2797(91)90086-m. [DOI] [PubMed] [Google Scholar]
  12. Epe B., Hegler J., Wild D. Singlet oxygen as an ultimately reactive species in Salmonella typhimurium DNA damage induced by methylene blue/visible light. Carcinogenesis. 1989 Nov;10(11):2019–2024. doi: 10.1093/carcin/10.11.2019. [DOI] [PubMed] [Google Scholar]
  13. Epe B., Mützel P., Adam W. DNA damage by oxygen radicals and excited state species: a comparative study using enzymatic probes in vitro. Chem Biol Interact. 1988;67(1-2):149–165. doi: 10.1016/0009-2797(88)90094-4. [DOI] [PubMed] [Google Scholar]
  14. Foote C. S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science. 1968 Nov 29;162(3857):963–970. doi: 10.1126/science.162.3857.963. [DOI] [PubMed] [Google Scholar]
  15. Gallagher P. E., Duker N. J. Formation of purine photoproducts in a defined human DNA sequence. Photochem Photobiol. 1989 May;49(5):599–605. doi: 10.1111/j.1751-1097.1989.tb08430.x. [DOI] [PubMed] [Google Scholar]
  16. Hall R. D., Chignell C. F. Steady-state near-infrared detection of singlet molecular oxygen: a Stern-Volmer quenching experiment with sodium azide. Photochem Photobiol. 1987 Apr;45(4):459–464. doi: 10.1111/j.1751-1097.1987.tb05403.x. [DOI] [PubMed] [Google Scholar]
  17. Kelfkens G., de Gruijl F. R., van der Leun J. C. Tumorigenesis by short-wave ultraviolet A: papillomas versus squamous cell carcinomas. Carcinogenesis. 1991 Aug;12(8):1377–1382. doi: 10.1093/carcin/12.8.1377. [DOI] [PubMed] [Google Scholar]
  18. Klein J. C., Bleeker M. J., Saris C. P., Roelen H. C., Brugghe H. F., van den Elst H., van der Marel G. A., van Boom J. H., Westra J. G., Kriek E. Repair and replication of plasmids with site-specific 8-oxodG and 8-AAFdG residues in normal and repair-deficient human cells. Nucleic Acids Res. 1992 Sep 11;20(17):4437–4443. doi: 10.1093/nar/20.17.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levin J. D., Johnson A. W., Demple B. Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J Biol Chem. 1988 Jun 15;263(17):8066–8071. [PubMed] [Google Scholar]
  20. Lindahl T. Repair of intrinsic DNA lesions. Mutat Res. 1990 May;238(3):305–311. doi: 10.1016/0165-1110(90)90022-4. [DOI] [PubMed] [Google Scholar]
  21. Moriya M., Ou C., Bodepudi V., Johnson F., Takeshita M., Grollman A. P. Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res. 1991 May;254(3):281–288. doi: 10.1016/0921-8777(91)90067-y. [DOI] [PubMed] [Google Scholar]
  22. Müller E., Boiteux S., Cunningham R. P., Epe B. Enzymatic recognition of DNA modifications induced by singlet oxygen and photosensitizers. Nucleic Acids Res. 1990 Oct 25;18(20):5969–5973. doi: 10.1093/nar/18.20.5969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nieuwint A. W., Aubry J. M., Arwert F., Kortbeek H., Herzberg S., Joenje H. Inability of chemically generated singlet oxygen to break the DNA backbone. Free Radic Res Commun. 1985;1(1):1–9. doi: 10.3109/10715768509056532. [DOI] [PubMed] [Google Scholar]
  24. Piette J. Biological consequences associated with DNA oxidation mediated by singlet oxygen. J Photochem Photobiol B. 1991 Dec;11(3-4):241–260. doi: 10.1016/1011-1344(91)80030-l. [DOI] [PubMed] [Google Scholar]
  25. Povirk L. F., Steighner R. J. Oxidized apurinic/apyrimidinic sites formed in DNA by oxidative mutagens. Mutat Res. 1989 Sep;214(1):13–22. doi: 10.1016/0027-5107(89)90193-0. [DOI] [PubMed] [Google Scholar]
  26. Salditt M., Braunstein S. N., Camerini-Otero R. D., Franklin R. M. Structure and synthesis of a lipid-containing bacteriophage. X. Improved techniques for the purification of bacteriophage PM2. Virology. 1972 Apr;48(1):259–262. doi: 10.1016/0042-6822(72)90133-x. [DOI] [PubMed] [Google Scholar]
  27. Schneider J. E., Price S., Maidt L., Gutteridge J. M., Floyd R. A. Methylene blue plus light mediates 8-hydroxy 2'-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res. 1990 Feb 11;18(3):631–635. doi: 10.1093/nar/18.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
  29. Tyrrell R. M., Keyse S. M. New trends in photobiology. The interaction of UVA radiation with cultured cells. J Photochem Photobiol B. 1990 Mar;4(4):349–361. doi: 10.1016/1011-1344(90)85014-n. [DOI] [PubMed] [Google Scholar]
  30. Umlas M. E., Franklin W. A., Chan G. L., Haseltine W. A. Ultraviolet light irradiation of defined-sequence DNA under conditions of chemical photosensitization. Photochem Photobiol. 1985 Sep;42(3):265–273. doi: 10.1111/j.1751-1097.1985.tb08941.x. [DOI] [PubMed] [Google Scholar]
  31. Wallace S. S. AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ Mol Mutagen. 1988;12(4):431–477. doi: 10.1002/em.2860120411. [DOI] [PubMed] [Google Scholar]
  32. Weiss R. B., Duker N. J. Endonucleolytic incision of UVB-irradiated DNA. Photochem Photobiol. 1987 Jun;45(6):763–768. doi: 10.1111/j.1751-1097.1987.tb07879.x. [DOI] [PubMed] [Google Scholar]
  33. Wood M. L., Dizdaroglu M., Gajewski E., Essigmann J. M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990 Jul 31;29(30):7024–7032. doi: 10.1021/bi00482a011. [DOI] [PubMed] [Google Scholar]
  34. Zierenberg B. E., Krämer D. M., Geisert M. G., Kirste R. G. Effects of sensitized and unsensitized longwave U.V.-irradiation on the solution properties of DNA. Photochem Photobiol. 1971 Oct;14(4):515–520. doi: 10.1111/j.1751-1097.1971.tb06190.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES