Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Feb 25;21(4):941–947. doi: 10.1093/nar/21.4.941

Rye nuclease I as a tool for structural studies of tRNAs with large variable arms.

C el Adlouni 1, G Keith 1, G Dirheimer 1, J W Szarkowski 1, A Przykorska 1
PMCID: PMC309228  PMID: 8383845

Abstract

A single-strand-specific nuclease from rye germ (Rn nuclease I) was used for secondary and tertiary structure investigations of tRNAs with large variable arms (class II tRNAs). We have studied the structure in solution of two recently sequenced tRNA(Leu): yeast tRNA(Leu)(ncm5UmAA) and bovine tRNA(Leu)(XmAA) as well as yeast tRNA(Leu)(UAG), tRNA(Leu)(m5CAA) and tRNA(Ser)(IGA). The latter is the only tRNA with a long variable arm for which the secondary and tertiary structure has already been studied by use of chemical probes and computer modelling. The data obtained in this work showed that the general model of class II tRNAs proposed by others for tRNA(Ser) can be extended to tRNAs(Leu) as well. However interesting differences in the structure of tRNAs(Leu) versus tRNA(Ser)(IGA) were also noticed. The main difference was observed in the accessibility of the variable loops to nucleolytic attack of Rn nuclease I: variable loops of all studied tRNA(Leu) species were cut by Rn nuclease I, while that of yeast tRNA(Ser)(IGA) was not. This could be due to differences in stability of the variable arms and the lengths of their loops which are 3 and 4 nucleotides in tRNA(Ser)(IGA) and tRNAs(Leu) respectively.

Full text

PDF
941

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brennan T., Sundaralingam M. Structlre of transfer RNA molecules containing the long variable loop. Nucleic Acids Res. 1976 Nov;3(11):3235–3250. doi: 10.1093/nar/3.11.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chang S. H., Kuo S., Hawkins E., Miller N. R. The corrected nucleotide sequence of yeast leucine transfer ribonucleic acid. Biochem Biophys Res Commun. 1973 Apr 16;51(4):951–955. doi: 10.1016/0006-291x(73)90019-3. [DOI] [PubMed] [Google Scholar]
  3. Dock-Bregeon A. C., Westhof E., Giegé R., Moras D. Solution structure of a tRNA with a large variable region: yeast tRNASer. J Mol Biol. 1989 Apr 20;206(4):707–722. doi: 10.1016/0022-2836(89)90578-0. [DOI] [PubMed] [Google Scholar]
  4. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Favorova O. O., Fasiolo F., Keith G., Vassilenko S. K., Ebel J. P. Partial digestion of tRNA--aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease. Biochemistry. 1981 Feb 17;20(4):1006–1011. doi: 10.1021/bi00507a055. [DOI] [PubMed] [Google Scholar]
  6. Garret M., Labouesse B., Litvak S., Romby P., Ebel J. P., Giegé R. Tertiary structure of animal tRNATrp in solution and interaction of tRNATrp with tryptophanyl-tRNA synthetase. Eur J Biochem. 1984 Jan 2;138(1):67–75. doi: 10.1111/j.1432-1033.1984.tb07882.x. [DOI] [PubMed] [Google Scholar]
  7. Holbrook S. R., Sussman J. L., Warrant R. W., Church G. M., Kim S. H. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe. Nucleic Acids Res. 1977 Aug;4(8):2811–2820. doi: 10.1093/nar/4.8.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keith G., Pixa G., Fix C., Dirheimer G. Primary structure of three tRNAs from brewer's yeast: tRNAPro2, tRNAHis1 and tRNAHis2. Biochimie. 1983 Nov-Dec;65(11-12):661–672. doi: 10.1016/s0300-9084(84)80030-9. [DOI] [PubMed] [Google Scholar]
  9. Moras D., Dock A. C., Dumas P., Westhof E., Romby P., Ebel J. P., Giegé R. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition. Proc Natl Acad Sci U S A. 1986 Feb;83(4):932–936. doi: 10.1073/pnas.83.4.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Przykorska A., Szarkowski J. W. Single-strand-specific nuclease from the nucleoplasm of rye germ nuclei. Eur J Biochem. 1980;108(1):285–293. doi: 10.1111/j.1432-1033.1980.tb04722.x. [DOI] [PubMed] [Google Scholar]
  12. Przykorska A., el Adlouni C., Keith G., Szarkowski J. W., Dirheimer G. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp). Nucleic Acids Res. 1992 Feb 25;20(4):659–663. doi: 10.1093/nar/20.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Randerath E., Gupta R. C., Chia L. L., Chang S. H., Randerath K. Yeast tRNA Leu UAG. Purification, properties and determination of the nucleotide sequence by radioactive derivative methods. Eur J Biochem. 1979 Jan 2;93(1):79–94. doi: 10.1111/j.1432-1033.1979.tb12797.x. [DOI] [PubMed] [Google Scholar]
  14. Romby P., Carbon P., Westhof E., Ehresmann C., Ebel J. P., Ehresmann B., Giegé R. Importance of conserved residues for the conformation of the T-loop in tRNAs. J Biomol Struct Dyn. 1987 Dec;5(3):669–687. doi: 10.1080/07391102.1987.10506419. [DOI] [PubMed] [Google Scholar]
  15. Romby P., Moras D., Bergdoll M., Dumas P., Vlassov V. V., Westhof E., Ebel J. P., Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol. 1985 Aug 5;184(3):455–471. doi: 10.1016/0022-2836(85)90294-3. [DOI] [PubMed] [Google Scholar]
  16. Romby P., Moras D., Dumas P., Ebel J. P., Giegé R. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. J Mol Biol. 1987 May 5;195(1):193–204. doi: 10.1016/0022-2836(87)90336-6. [DOI] [PubMed] [Google Scholar]
  17. Silberklang M., Prochiantz A., Haenni A. L., Rajbhandary U. L. Studies on the sequence of the 3'-terminal region of turnip-yellow-mosaic-virus RNA. Eur J Biochem. 1977 Feb;72(3):465–478. doi: 10.1111/j.1432-1033.1977.tb11270.x. [DOI] [PubMed] [Google Scholar]
  18. Westhof E., Sundaralingam M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry. 1986 Aug 26;25(17):4868–4878. doi: 10.1021/bi00365a022. [DOI] [PubMed] [Google Scholar]
  19. Wrede P., Wurst R., Vournakis J., Rich A. Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. J Biol Chem. 1979 Oct 10;254(19):9608–9616. [PubMed] [Google Scholar]
  20. Zachau H. G., Dütting D., Feldmann H. The structures of two serine transfer ribonucleic acids. Hoppe Seylers Z Physiol Chem. 1966;347(4):212–235. doi: 10.1515/bchm2.1966.347.1.212. [DOI] [PubMed] [Google Scholar]
  21. el Adlouni C., Desgrès J., Dirheimer G., Keith G. Sequence of a new tRNA(Leu)(U*AA) from brewer's yeast. Biochimie. 1991 Nov;73(11):1355–1360. doi: 10.1016/0300-9084(91)90165-w. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES