Abstract
We have developed an algorithm and a computer program for simultaneously folding homologous RNA sequences. Given an alignment of M homologous sequences of length N, the program performs phylogenetic comparative analysis and predicts a common secondary structure conserved in the sequences. When the structure is not uniquely determined, it infers multiple structures which appear most plausible. This method is superior to energy minimization methods in the sense that it is not sensitive to point mutation of a sequence. It is also superior to usual phylogenetic comparative methods in that it does not require manual scrutiny for covariation or secondary structures. The most plausible 1-5 structures are produced in O(MN2 + N3) time and O(N2) space, which are the same requirements as those of widely used dynamic programs based on energy minimization for folding a single sequence. This is the first algorithm probably practical both in terms of time and space for finding secondary structures of homologous RNA sequences. The algorithm has been implemented in C on a Sun SparcStation, and has been verified by testing on tRNAs, 5S rRNAs, 16S rRNAs, TAR RNAs of human immunodeficiency virus type 1 (HIV-1), and RRE RNAs of HIV-1. We have also applied the program to cis-acting packaging sequences of HIV-1, for which no generally accepted structures yet exist, and propose potentially stable structures. Simulation of the program with random sequences with the same base composition and the same degree of similarity as the above sequences shows that structures common to homologous sequences are very unlikely to occur by chance in random sequences.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldovini A., Young R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990 May;64(5):1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. W. Phylogenetic comparative analysis of RNA structure on Macintosh computers. Comput Appl Biosci. 1991 Jul;7(3):391–393. doi: 10.1093/bioinformatics/7.3.391. [DOI] [PubMed] [Google Scholar]
- Cech T. R., Tanner N. K., Tinoco I., Jr, Weir B. R., Zuker M., Perlman P. S. Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3903–3907. doi: 10.1073/pnas.80.13.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan L., Zuker M., Jacobson A. B. A computer method for finding common base paired helices in aligned sequences: application to the analysis of random sequences. Nucleic Acids Res. 1991 Jan 25;19(2):353–358. doi: 10.1093/nar/19.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clavel F., Orenstein J. M. A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol. 1990 Oct;64(10):5230–5234. doi: 10.1128/jvi.64.10.5230-5234.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullen B. R. The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell. 1990 Nov 16;63(4):655–657. doi: 10.1016/0092-8674(90)90129-3. [DOI] [PubMed] [Google Scholar]
- Dayton E. T., Konings D. A., Powell D. M., Shapiro B. A., Butini L., Maizel J. V., Dayton A. I. Extensive sequence-specific information throughout the CAR/RRE, the target sequence of the human immunodeficiency virus type 1 Rev protein. J Virol. 1992 Feb;66(2):1139–1151. doi: 10.1128/jvi.66.2.1139-1151.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
- Gutell R. R., Weiser B., Woese C. R., Noller H. F. Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1985;32:155–216. doi: 10.1016/s0079-6603(08)60348-7. [DOI] [PubMed] [Google Scholar]
- Göringer H. U., Wagner R. 5S RNA structure and function. Methods Enzymol. 1988;164:721–747. doi: 10.1016/s0076-6879(88)64081-x. [DOI] [PubMed] [Google Scholar]
- HOLLEY R. W., APGAR J., EVERETT G. A., MADISON J. T., MARQUISEE M., MERRILL S. H., PENSWICK J. R., ZAMIR A. STRUCTURE OF A RIBONUCLEIC ACID. Science. 1965 Mar 19;147(3664):1462–1465. doi: 10.1126/science.147.3664.1462. [DOI] [PubMed] [Google Scholar]
- Harrison G. P., Lever A. M. The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure. J Virol. 1992 Jul;66(7):4144–4153. doi: 10.1128/jvi.66.7.4144-4153.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi T., Shioda T., Iwakura Y., Shibuta H. RNA packaging signal of human immunodeficiency virus type 1. Virology. 1992 Jun;188(2):590–599. doi: 10.1016/0042-6822(92)90513-o. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
- Malim M. H., Tiley L. S., McCarn D. F., Rusche J. R., Hauber J., Cullen B. R. HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell. 1990 Feb 23;60(4):675–683. doi: 10.1016/0092-8674(90)90670-a. [DOI] [PubMed] [Google Scholar]
- Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
- Noller H. F., Woese C. R. Secondary structure of 16S ribosomal RNA. Science. 1981 Apr 24;212(4493):403–411. doi: 10.1126/science.6163215. [DOI] [PubMed] [Google Scholar]
- Singhal R. P., Shaw J. K. Prokaryotic and eukaryotic 5 S RNAs: primary sequences and proposed secondary structures. Prog Nucleic Acid Res Mol Biol. 1983;28:177-209, 251-2. doi: 10.1016/s0079-6603(08)60087-2. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., Moll J., Meissner F., Hartmann T. Compilation of tRNA sequences. Nucleic Acids Res. 1985;13 (Suppl):r1–49. doi: 10.1093/nar/13.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
- Waterman M. S., Arratia R., Galas D. J. Pattern recognition in several sequences: consensus and alignment. Bull Math Biol. 1984;46(4):515–527. doi: 10.1007/BF02459500. [DOI] [PubMed] [Google Scholar]
- Waterman M. S. Computer analysis of nucleic acid sequences. Methods Enzymol. 1988;164:765–793. doi: 10.1016/s0076-6879(88)64083-3. [DOI] [PubMed] [Google Scholar]
- Zuker M. Computer prediction of RNA structure. Methods Enzymol. 1989;180:262–288. doi: 10.1016/0076-6879(89)80106-5. [DOI] [PubMed] [Google Scholar]
- Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
- Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
