Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 May 11;21(9):2193–2199. doi: 10.1093/nar/21.9.2193

Unusually biased nucleotide sequences on sense strands of Flavobacterium sp. genes produce nonstop frames on the corresponding antisense strands.

K Ikehara 1, E Okazawa 1
PMCID: PMC309484  PMID: 8502561

Abstract

From investigation of eight Flavobacterium sp. genes encoding enzyme proteins, it was found that six genes had nonstop frames (NSFs) on the antisense strands, and base sequences of the genes are mainly composed of repeating triplet sequence(s), 5'-GNC-3' (where G and C are guanine and cytosine, and N is either of the four bases), in the reading frames. Thus, we concluded that the biased nucleotide sequences on the sense strands produce NSFs on the corresponding antisense strands. Furthermore, from the precise alignments of both nucleotide and amino acid sequences of two related Flavobacterium sp. genes, nyIB and nyIB', it was found that base replacements might have occurred symmetrically in the codons. That is, transversions between G and C were observed at high frequencies at the first and third positions of codons, but not at the second positions. At the first position, AG base transitions were observed much more than similar CT transitions, whereas CT transitions were found at the third positions at a relatively high frequency. These suggest that symmetrical base replacements in codons might be the main contribution to evolution in Flavobacterium sp. genes.

Full text

PDF
2193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kanagawa K., Negoro S., Takada N., Okada H. Plasmid dependence of Pseudomonas sp. strain NK87 enzymes that degrade 6-aminohexanoate-cyclic dimer. J Bacteriol. 1989 Jun;171(6):3181–3186. doi: 10.1128/jb.171.6.3181-3186.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Koyama Y., Kitao S., Yamamoto-Otake H., Suzuki M., Nakano E. Cloning and expression of the creatinase gene from Flavobacterium sp. U-188 in Escherichia coli. Agric Biol Chem. 1990 Jun;54(6):1453–1457. [PubMed] [Google Scholar]
  3. Metzger S., Dror I. B., Aizenman E., Schreiber G., Toone M., Friesen J. D., Cashel M., Glaser G. The nucleotide sequence and characterization of the relA gene of Escherichia coli. J Biol Chem. 1988 Oct 25;263(30):15699–15704. [PubMed] [Google Scholar]
  4. Metzger S., Sarubbi E., Glaser G., Cashel M. Protein sequences encoded by the relA and the spoT genes of Escherichia coli are interrelated. J Biol Chem. 1989 Jun 5;264(16):9122–9125. [PubMed] [Google Scholar]
  5. Mulbry W. W., Karns J. S. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol. 1989 Dec;171(12):6740–6746. doi: 10.1128/jb.171.12.6740-6746.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ohno S. Universal rule for coding sequence construction: TA/CG deficiency-TG/CT excess. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9630–9634. doi: 10.1073/pnas.85.24.9630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Okada H., Negoro S., Kimura H., Nakamura S. Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers. Nature. 1983 Nov 10;306(5939):203–206. doi: 10.1038/306203a0. [DOI] [PubMed] [Google Scholar]
  8. Sarubbi E., Rudd K. E., Xiao H., Ikehara K., Kalman M., Cashel M. Characterization of the spoT gene of Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):15074–15082. [PubMed] [Google Scholar]
  9. Shiffman D., Cohen G., Aharonowitz Y., Palissa H., von Dohren H., Kleinkauf H., Mevarech M. Nucleotide sequence of the isopenicillin N synthase gene (pcbC) of the gram negative Flavobacterium sp. SC 12,154. Nucleic Acids Res. 1990 Feb 11;18(3):660–660. doi: 10.1093/nar/18.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tarentino A. L., Quinones G., Schrader W. P., Changchien L. M., Plummer T. H., Jr Multiple endoglycosidase (Endo) F activities expressed by Flavobacterium meningosepticum. Endo F1: molecular cloning, primary sequence, and structural relationship to Endo H. J Biol Chem. 1992 Feb 25;267(6):3868–3872. [PubMed] [Google Scholar]
  11. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. Natural relationship between bacteroides and flavobacteria. J Bacteriol. 1985 Oct;164(1):230–236. doi: 10.1128/jb.164.1.230-236.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Xun L. Y., Orser C. S. Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding gene (pcpA). J Bacteriol. 1991 May;173(9):2920–2926. doi: 10.1128/jb.173.9.2920-2926.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yamamoto-Otake H., Koyama Y., Horiuchi T., Nakano E. Cloning, sequencing, and expression of the N-acyl-D-mannosamine dehydrogenase gene from Flavobacterium sp. strain 141-8 in Escherichia coli. Appl Environ Microbiol. 1991 May;57(5):1418–1422. doi: 10.1128/aem.57.5.1418-1422.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yomo T., Urabe I., Okada H. No stop codons in the antisense strands of the genes for nylon oligomer degradation. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3780–3784. doi: 10.1073/pnas.89.9.3780. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES