Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 5;67(Pt 4):o793. doi: 10.1107/S1600536811007276

5-Amino-2,4,6-triiodo­isophthalic acid–4,4′-bipyridine N,N′-dioxide–water (1/1/1)

Kou-Lin Zhang a, Jin-Bo Zhang a, Seik Weng Ng b,*
PMCID: PMC3099751  PMID: 21754083

Abstract

The aromatic rings of the N,N′-dioxide molecule in the title compound, C8H4NI3O4·C10H8N2O2·H2O, are twisted by 14.0 (2)°. The –CO2H substituents of the 5-amino-2,4,6-triiodo­isophthalic acid are twisted by 83.0 (2) and 86.5 (2)° out of the plane of the aromatic ring. In the crystal, the three components are linked by O—H⋯O hydrogen bonds into a three-dimensional network. An N—H⋯O inter­action also occurs. One of the amino H atom is not involved in hydrogen bonding.

Related literature

For the structure of the monohydrated carb­oxy­lic acid, see: Beck & Sheldrick (2008). For the 4,4′-bipyridinium 5-amino-2,4,6-triiodo­isophthalate co-crystal of carb­oxy­lic acid, see: Zhang et al. (2010).graphic file with name e-67-0o793-scheme1.jpg

Experimental

Crystal data

  • C8H4NI3O4·C10H8N2O2·H2O

  • M r = 765.02

  • Monoclinic, Inline graphic

  • a = 7.5000 (2) Å

  • b = 17.0808 (4) Å

  • c = 16.523 (3) Å

  • β = 94.349 (2)°

  • V = 2110.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.49 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.05 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.467, T max = 0.807

  • 10861 measured reflections

  • 4660 independent reflections

  • 4112 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.068

  • S = 1.04

  • 4660 reflections

  • 304 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007276/bt5482sup1.cif

e-67-0o793-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007276/bt5482Isup2.hkl

e-67-0o793-Isup2.hkl (228.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.84 (3) 1.64 (3) 2.478 (4) 174 (6)
O3—H3⋯O6ii 0.84 (3) 1.63 (3) 2.465 (4) 170 (7)
O1W—H1w1⋯O2 0.84 (3) 2.30 (3) 3.073 (4) 154 (4)
O1W—H1w2⋯O5iii 0.84 (3) 2.12 (3) 2.945 (4) 167 (5)
N1—H11⋯O1wiv 0.88 (3) 2.20 (3) 2.906 (5) 138 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The attempt at synthesizing the 4,4'-bipyridine adduct of cadmium 5-amino-2,4,6-triiodoisophthalate gave instead a co-crystal having a monoprotonated 4,4'-bipyridinium 5-amino-2,4,6-triiodoisophthalate as one component and a carboxylic acid as the other (Zhang et al., 2010). Replacing the metal ion by a zinc ion, and with 4,4'-bipyridine N,N'-dioxide in place of 4,4'-bipyridine, gave instead the title monohydrated neutral co-crystal, C10H8N2O2.C8H4NI2O4.H2O (Scheme I, Fig. 1). In the N-heterocycle, the rings are twisted by 14.0 (2) °. In the carboxylic acid, the –CO2H substituents are nearly perpendicular to the aromatic ring. The three components are linked by O–H···O hydrogen bonds into a layer structure (Table 1).

Experimental

Zinc nitrate hexahydrate (58 mg, 0.2 mmol), 5-amino-2,4,6-triiodoisophthalic acid (59 mg, 0.1 mmol), 4,4'-bipyridine N,N'-dioxide (56 mg, 0.1 mmol), sodium hydroxide (4 mg, 0.1 mmol) and water (6 ml) were heated ain a 16-ml, Teflon-lined Parr bomb. The bomb was heated at 343 K for 3 days. Greenish-yellow crystals were isolated from the cool mixture.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H = 0.88±0.01, O–H = 0.84±0.01 Å.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H8N2O2.C8H4NI3O4.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C8H4NI3O4·C10H8N2O2·H2O F(000) = 1432
Mr = 765.02 Dx = 2.408 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5995 reflections
a = 7.5000 (2) Å θ = 2.4–29.2°
b = 17.0808 (4) Å µ = 4.49 mm1
c = 16.523 (3) Å T = 100 K
β = 94.349 (2)° Prism, yellow
V = 2110.6 (4) Å3 0.20 × 0.05 × 0.05 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4660 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 4112 reflections with I > 2σ(I)
Mirror Rint = 0.032
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.4°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −16→21
Tmin = 0.467, Tmax = 0.807 l = −21→21
10861 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0304P)2] where P = (Fo2 + 2Fc2)/3
4660 reflections (Δ/σ)max = 0.001
304 parameters Δρmax = 0.73 e Å3
6 restraints Δρmin = −0.97 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.32943 (3) 0.507910 (15) 0.632563 (14) 0.01280 (8)
I2 0.05617 (3) 0.779896 (16) 0.826265 (14) 0.01348 (8)
I3 0.05801 (3) 0.802046 (16) 0.463723 (14) 0.01291 (8)
O1 0.0967 (4) 0.57411 (17) 0.81306 (15) 0.0145 (6)
O2 0.3866 (4) 0.60594 (16) 0.82653 (15) 0.0139 (6)
O3 0.1102 (4) 0.59971 (17) 0.45040 (15) 0.0140 (6)
O4 0.3967 (4) 0.63963 (17) 0.46318 (15) 0.0158 (6)
O5 0.3523 (4) 0.98110 (17) 0.57244 (15) 0.0171 (6)
O6 0.8488 (4) 0.46621 (17) 0.67957 (15) 0.0165 (6)
O1W 0.6478 (5) 0.49085 (19) 0.91589 (18) 0.0215 (7)
N1 0.0344 (5) 0.8521 (2) 0.64989 (18) 0.0164 (8)
N2 0.4406 (4) 0.9148 (2) 0.59092 (18) 0.0134 (7)
N3 0.8019 (4) 0.5409 (2) 0.66729 (18) 0.0126 (7)
C1 0.2386 (5) 0.6091 (2) 0.7914 (2) 0.0111 (8)
C2 0.2034 (5) 0.6574 (2) 0.7142 (2) 0.0112 (8)
C3 0.1342 (5) 0.7325 (2) 0.7169 (2) 0.0099 (8)
C4 0.0991 (5) 0.7782 (2) 0.6459 (2) 0.0109 (8)
C5 0.1361 (5) 0.7429 (2) 0.5724 (2) 0.0105 (8)
C6 0.2090 (5) 0.6682 (2) 0.5683 (2) 0.0105 (8)
C7 0.2412 (5) 0.6246 (2) 0.6397 (2) 0.0098 (8)
C8 0.2487 (5) 0.6338 (2) 0.4873 (2) 0.0119 (8)
C9 0.4693 (5) 0.8909 (3) 0.6689 (2) 0.0145 (9)
H9 0.4314 0.9225 0.7116 0.017*
C10 0.5527 (6) 0.8211 (2) 0.6861 (2) 0.0149 (9)
H10 0.5746 0.8057 0.7412 0.018*
C11 0.6067 (5) 0.7718 (2) 0.6253 (2) 0.0117 (8)
C12 0.5799 (5) 0.8009 (2) 0.5456 (2) 0.0129 (8)
H12A 0.6200 0.7712 0.5019 0.016*
C13 0.4974 (5) 0.8712 (2) 0.5301 (2) 0.0144 (8)
H13 0.4798 0.8894 0.4757 0.017*
C14 0.7350 (5) 0.5812 (2) 0.7277 (2) 0.0123 (8)
H14 0.7275 0.5570 0.7791 0.015*
C15 0.6778 (5) 0.6564 (2) 0.7165 (2) 0.0130 (8)
H15 0.6333 0.6841 0.7606 0.016*
C16 0.6833 (5) 0.6936 (2) 0.6412 (2) 0.0133 (8)
C17 0.7574 (5) 0.6498 (2) 0.5799 (2) 0.0127 (8)
H17 0.7661 0.6726 0.5279 0.015*
C18 0.8169 (5) 0.5751 (2) 0.5935 (2) 0.0130 (8)
H18 0.8688 0.5469 0.5516 0.016*
H1 0.121 (7) 0.543 (2) 0.852 (2) 0.038 (16)*
H3 0.130 (8) 0.582 (3) 0.4044 (17) 0.06 (2)*
H1W1 0.563 (5) 0.523 (2) 0.907 (3) 0.031 (15)*
H1W2 0.694 (6) 0.505 (3) 0.9614 (14) 0.026 (14)*
H11 −0.016 (6) 0.877 (2) 0.6082 (18) 0.023 (13)*
H12 −0.008 (6) 0.870 (3) 0.6942 (16) 0.029 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01590 (14) 0.00943 (15) 0.01275 (13) 0.00111 (10) −0.00109 (10) −0.00108 (10)
I2 0.01938 (15) 0.01238 (15) 0.00890 (12) 0.00079 (11) 0.00256 (10) −0.00099 (10)
I3 0.01642 (14) 0.01286 (15) 0.00930 (12) 0.00009 (11) −0.00009 (10) 0.00293 (10)
O1 0.0152 (15) 0.0146 (16) 0.0137 (13) −0.0024 (12) 0.0007 (11) 0.0074 (12)
O2 0.0138 (15) 0.0163 (16) 0.0112 (12) 0.0002 (12) −0.0024 (11) 0.0021 (12)
O3 0.0166 (15) 0.0146 (16) 0.0105 (13) −0.0011 (12) −0.0015 (11) −0.0046 (12)
O4 0.0153 (15) 0.0192 (17) 0.0135 (13) 0.0012 (13) 0.0053 (11) 0.0015 (12)
O5 0.0252 (17) 0.0114 (16) 0.0140 (13) 0.0066 (13) −0.0029 (12) −0.0030 (12)
O6 0.0256 (17) 0.0105 (15) 0.0131 (13) 0.0048 (13) 0.0001 (12) −0.0012 (12)
O1W 0.0281 (19) 0.0166 (18) 0.0185 (15) 0.0011 (15) −0.0061 (14) −0.0044 (13)
N1 0.025 (2) 0.014 (2) 0.0102 (16) 0.0045 (16) 0.0026 (15) 0.0014 (15)
N2 0.0162 (18) 0.0109 (19) 0.0130 (15) −0.0011 (14) 0.0001 (13) −0.0032 (14)
N3 0.0123 (17) 0.0139 (19) 0.0117 (15) 0.0012 (14) 0.0007 (13) −0.0001 (14)
C1 0.020 (2) 0.009 (2) 0.0052 (16) −0.0004 (17) 0.0029 (15) −0.0027 (15)
C2 0.0104 (19) 0.012 (2) 0.0104 (17) −0.0018 (16) −0.0024 (14) −0.0001 (15)
C3 0.0112 (19) 0.011 (2) 0.0080 (16) −0.0031 (16) 0.0021 (14) −0.0052 (15)
C4 0.0080 (19) 0.011 (2) 0.0134 (18) −0.0018 (16) −0.0006 (14) −0.0013 (15)
C5 0.013 (2) 0.013 (2) 0.0055 (16) −0.0021 (16) −0.0017 (14) 0.0029 (15)
C6 0.0103 (19) 0.011 (2) 0.0102 (17) −0.0017 (16) 0.0004 (14) 0.0003 (15)
C7 0.0083 (19) 0.008 (2) 0.0134 (17) 0.0020 (15) 0.0000 (14) 0.0006 (15)
C8 0.018 (2) 0.008 (2) 0.0098 (17) 0.0039 (17) −0.0009 (15) 0.0059 (15)
C9 0.016 (2) 0.016 (2) 0.0114 (17) 0.0011 (17) −0.0027 (15) −0.0044 (16)
C10 0.021 (2) 0.015 (2) 0.0082 (17) −0.0017 (18) 0.0001 (15) −0.0001 (16)
C11 0.0058 (18) 0.015 (2) 0.0142 (18) −0.0047 (16) 0.0001 (14) −0.0012 (16)
C12 0.013 (2) 0.013 (2) 0.0125 (18) −0.0043 (17) 0.0006 (15) −0.0046 (16)
C13 0.016 (2) 0.015 (2) 0.0121 (17) −0.0024 (18) 0.0012 (15) −0.0024 (16)
C14 0.0111 (19) 0.017 (2) 0.0082 (17) −0.0022 (17) 0.0008 (14) −0.0036 (16)
C15 0.013 (2) 0.013 (2) 0.0124 (17) −0.0029 (17) 0.0011 (15) −0.0031 (16)
C16 0.010 (2) 0.017 (2) 0.0131 (18) −0.0032 (17) −0.0002 (15) −0.0033 (16)
C17 0.0102 (19) 0.017 (2) 0.0106 (17) −0.0027 (17) 0.0017 (14) −0.0011 (16)
C18 0.0089 (19) 0.019 (2) 0.0117 (17) 0.0011 (17) 0.0028 (14) −0.0029 (16)

Geometric parameters (Å, °)

I1—C7 2.106 (4) C3—C4 1.417 (5)
I2—C3 2.103 (4) C4—C5 1.402 (5)
I3—C5 2.104 (4) C5—C6 1.392 (6)
O1—C1 1.294 (5) C6—C7 1.400 (5)
O1—H1 0.84 (3) C6—C8 1.512 (5)
O2—C1 1.214 (4) C9—C10 1.365 (6)
O3—C8 1.302 (5) C9—H9 0.9500
O3—H3 0.84 (3) C10—C11 1.394 (6)
O4—C8 1.212 (5) C10—H10 0.9500
O5—N2 1.335 (4) C11—C12 1.407 (5)
O6—N3 1.335 (4) C11—C16 1.469 (6)
O1W—H1W1 0.84 (3) C12—C13 1.366 (6)
O1W—H1W2 0.84 (3) C12—H12A 0.9500
N1—C4 1.356 (5) C13—H13 0.9500
N1—H11 0.88 (3) C14—C15 1.362 (6)
N1—H12 0.88 (3) C14—H14 0.9500
N2—C13 1.347 (5) C15—C16 1.402 (5)
N2—C9 1.354 (5) C15—H15 0.9500
N3—C14 1.341 (5) C16—C17 1.408 (5)
N3—C18 1.364 (5) C17—C18 1.365 (6)
C1—C2 1.525 (5) C17—H17 0.9500
C2—C3 1.386 (5) C18—H18 0.9500
C2—C7 1.401 (5)
C1—O1—H1 111 (4) O4—C8—O3 126.9 (3)
C8—O3—H3 113 (4) O4—C8—C6 120.4 (4)
H1W1—O1W—H1W2 103 (5) O3—C8—C6 112.6 (3)
C4—N1—H11 124 (3) N2—C9—C10 120.0 (4)
C4—N1—H12 122 (3) N2—C9—H9 120.0
H11—N1—H12 108 (4) C10—C9—H9 120.0
O5—N2—C13 118.6 (3) C9—C10—C11 122.0 (4)
O5—N2—C9 121.0 (3) C9—C10—H10 119.0
C13—N2—C9 120.4 (4) C11—C10—H10 119.0
O6—N3—C14 119.2 (3) C10—C11—C12 115.6 (4)
O6—N3—C18 120.4 (3) C10—C11—C16 123.4 (3)
C14—N3—C18 120.4 (4) C12—C11—C16 121.0 (3)
O2—C1—O1 126.0 (3) C13—C12—C11 121.2 (4)
O2—C1—C2 121.2 (3) C13—C12—H12A 119.4
O1—C1—C2 112.8 (3) C11—C12—H12A 119.4
C3—C2—C7 120.0 (3) N2—C13—C12 120.7 (4)
C3—C2—C1 121.0 (3) N2—C13—H13 119.7
C7—C2—C1 119.0 (4) C12—C13—H13 119.7
C2—C3—C4 121.9 (3) N3—C14—C15 121.0 (4)
C2—C3—I2 120.9 (3) N3—C14—H14 119.5
C4—C3—I2 117.0 (3) C15—C14—H14 119.5
N1—C4—C5 122.5 (3) C14—C15—C16 121.2 (4)
N1—C4—C3 121.1 (3) C14—C15—H15 119.4
C5—C4—C3 116.4 (4) C16—C15—H15 119.4
C6—C5—C4 122.7 (3) C15—C16—C17 116.0 (4)
C6—C5—I3 119.0 (2) C15—C16—C11 122.2 (4)
C4—C5—I3 118.2 (3) C17—C16—C11 121.7 (3)
C5—C6—C7 119.4 (3) C18—C17—C16 121.4 (4)
C5—C6—C8 120.2 (3) C18—C17—H17 119.3
C7—C6—C8 120.4 (3) C16—C17—H17 119.3
C6—C7—C2 119.6 (4) N3—C18—C17 119.9 (3)
C6—C7—I1 119.4 (3) N3—C18—H18 120.0
C2—C7—I1 120.9 (3) C17—C18—H18 120.0
O2—C1—C2—C3 −97.1 (5) C5—C6—C8—O4 94.5 (5)
O1—C1—C2—C3 82.9 (5) C7—C6—C8—O4 −87.0 (5)
O2—C1—C2—C7 83.2 (5) C5—C6—C8—O3 −85.4 (5)
O1—C1—C2—C7 −96.8 (4) C7—C6—C8—O3 93.1 (4)
C7—C2—C3—C4 0.2 (6) O5—N2—C9—C10 177.0 (4)
C1—C2—C3—C4 −179.5 (4) C13—N2—C9—C10 −1.5 (6)
C7—C2—C3—I2 174.9 (3) N2—C9—C10—C11 −1.6 (6)
C1—C2—C3—I2 −4.8 (5) C9—C10—C11—C12 3.9 (6)
C2—C3—C4—N1 −178.8 (4) C9—C10—C11—C16 −174.8 (4)
I2—C3—C4—N1 6.3 (5) C10—C11—C12—C13 −3.4 (6)
C2—C3—C4—C5 0.8 (6) C16—C11—C12—C13 175.4 (4)
I2—C3—C4—C5 −174.1 (3) O5—N2—C13—C12 −176.5 (3)
N1—C4—C5—C6 177.4 (4) C9—N2—C13—C12 2.0 (6)
C3—C4—C5—C6 −2.1 (6) C11—C12—C13—N2 0.6 (6)
N1—C4—C5—I3 −7.7 (5) O6—N3—C14—C15 −176.9 (3)
C3—C4—C5—I3 172.7 (3) C18—N3—C14—C15 1.2 (6)
C4—C5—C6—C7 2.5 (6) N3—C14—C15—C16 1.3 (6)
I3—C5—C6—C7 −172.3 (3) C14—C15—C16—C17 −2.4 (6)
C4—C5—C6—C8 −179.0 (4) C14—C15—C16—C11 174.0 (4)
I3—C5—C6—C8 6.2 (5) C10—C11—C16—C15 12.1 (6)
C5—C6—C7—C2 −1.4 (6) C12—C11—C16—C15 −166.5 (4)
C8—C6—C7—C2 −179.9 (4) C10—C11—C16—C17 −171.6 (4)
C5—C6—C7—I1 174.5 (3) C12—C11—C16—C17 9.7 (6)
C8—C6—C7—I1 −4.0 (5) C15—C16—C17—C18 1.1 (6)
C3—C2—C7—C6 0.1 (6) C11—C16—C17—C18 −175.4 (4)
C1—C2—C7—C6 179.8 (3) O6—N3—C18—C17 175.6 (3)
C3—C2—C7—I1 −175.7 (3) C14—N3—C18—C17 −2.5 (6)
C1—C2—C7—I1 4.0 (5) C16—C17—C18—N3 1.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O5i 0.84 (3) 1.64 (3) 2.478 (4) 174 (6)
O3—H3···O6ii 0.84 (3) 1.63 (3) 2.465 (4) 170 (7)
O1W—H1w1···O2 0.84 (3) 2.30 (3) 3.073 (4) 154 (4)
O1W—H1w2···O5iii 0.84 (3) 2.12 (3) 2.945 (4) 167 (5)
N1—H11···O1wiv 0.88 (3) 2.20 (3) 2.906 (5) 138 (4)

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+3/2, z+1/2; (iv) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5482).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  6. Zhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, o3165. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007276/bt5482sup1.cif

e-67-0o793-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007276/bt5482Isup2.hkl

e-67-0o793-Isup2.hkl (228.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES