Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 26;67(Pt 4):o972–o973. doi: 10.1107/S1600536811010294

A triclinic polymorph with Z = 3 of N,N′-bis­(2-pyrid­yl)oxamide

Wan-Ju Zhang a, Fang Wang a,*, Gui-Ling Zhang b, Xin Xiao c
PMCID: PMC3099752  PMID: 21754234

Abstract

The asymmetric unit of the title compound, C12H10N4O2, contains three half-mol­ecules. Each half-mol­ecule is completed by crystallographic inversion symmetry. The title compound, (I), is a polymorph of the structure, (II), reported by Hsu & Chen [Eur. J. Inorg. Chem. (2004), 1488–1493]. In the original report, the compound crystallized in the tetra­gonal space group P Inline graphic21c (Z = 8), whereas the structure reported here is triclinic (P Inline graphic, Z = 3). In both forms, each oxamide mol­ecule is almost planar (with maximum deviations are 0.266 and 0.166 Å) and the O atoms are trans oriented. The principal difference between the two forms lies in the different hydrogen-bonding patterns. In (I), two N—H⋯O and one N—H⋯N hydrogen bonds link the mol­ecules, forming a two-dimensional network, whereas in (II) there are no classical hydrogen bonds to O atoms and only weak C—H⋯O inter­actions are found along with rings of N—H⋯N bonds.

Related literature

For general background to the use of N,N′-disubstituted oxamides as ligands, see: Bencini et al. (1986). For the synthesis and related structure, see: Hsu & Chen (2004).graphic file with name e-67-0o972-scheme1.jpg

Experimental

Crystal data

  • C12H10N4O2

  • M r = 242.24

  • Triclinic, Inline graphic

  • a = 8.459 (2) Å

  • b = 10.705 (3) Å

  • c = 11.058 (3) Å

  • α = 99.555 (9)°

  • β = 101.344 (8)°

  • γ = 112.980 (8)°

  • V = 870.5 (4) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.26 × 0.26 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.975, T max = 0.980

  • 8909 measured reflections

  • 3018 independent reflections

  • 2575 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.125

  • S = 1.07

  • 3018 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010294/ez2234sup1.cif

e-67-0o972-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010294/ez2234Isup2.hkl

e-67-0o972-Isup2.hkl (145.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 2.39 3.176 (2) 153
N4—H4A⋯O3 0.86 2.27 2.898 (2) 130
N6—H6⋯N3i 0.86 2.39 3.188 (2) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Doctoral Foundation of Huanggang Normal University (No. 09CD157) for financial support.

supplementary crystallographic information

Comment

N,N'-disubstituted oxamides are known to be versatile organic ligands since their coordinating ability toward transition-metal ions can be modified and tuned by changing the nature of the amide substituents (Bencini et al., 1986). The title compound, (I), is a triclinic polymorph of the previously reported crystal structure of this symmetrical N,N'-disubstituted oxamide which crystallizes in the tetragonal space group P-421/c (Hsu & Chen, 2004). The relative arrangement of the molecules observed in the current structure is distinctively different from that previously reported.

The molecular structure of (I) is shown in Fig. 1. It crystallizes in the space group P-1 with three molecules in each unit cell. Each N,N'-di(2-pyridyl)oxamide molecule is almost planar and the O atoms are trans-oriented. In the crystal structure, classical N—H···O and N—H···N hydrogen bonds (Table 1, Fig. 2) link the molecules to form a two-dimensional network.

Experimental

2-Aminopyridine (4.7 g, 50 mmol) was dissolved in 200 ml CH2Cl2, followed by addition of triethyl amine (10.0 ml, 72.1 mmol) at 273 K. The mixture was then stirred for 10 min. Oxalyl chloride (2.2 ml, 25 mmol) in 10 ml CH2Cl2 was then added slowly to the above mixture. After continuous stirring for about 3 h at 273 K, the resulting solution was concentrated under vacuum until a large amount of solid precipitated. The solid was filtered, washed with water and then dried in vacuum. Yield: 4.3 g (71%). Colourless block crystals suitable for X-ray crystallography were obtained by slow evaporation of the solvent from a solution of the title compound in toluene.

Refinement

All the hydrogen atoms were placed in calculated positions, with C—H distances of 0.93 Å (aromatic) and N—H distance of 0.86 Å, and were included in the final cycles of refinement as riding, with Uiso(H) = 1.2Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. [symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1.]

Fig. 2.

Fig. 2.

The two-dimensional hydrogen-bonded structure. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding were omitted for clarity. [symmetry code: (iii) -x + 1, -y + 1, -z + 1.]

Crystal data

C12H10N4O2 Z = 3
Mr = 242.24 F(000) = 378
Triclinic, P1 Dx = 1.386 Mg m3
Hall symbol: -p 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.459 (2) Å Cell parameters from 2575 reflections
b = 10.705 (3) Å θ = 2.0–25.1°
c = 11.058 (3) Å µ = 0.10 mm1
α = 99.555 (9)° T = 298 K
β = 101.344 (8)° Block, colourless
γ = 112.980 (8)° 0.26 × 0.26 × 0.20 mm
V = 870.5 (4) Å3

Data collection

Bruker SMART APEX CCD diffractometer 3018 independent reflections
Radiation source: fine-focus sealed tube 2575 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −10→9
Tmin = 0.975, Tmax = 0.980 k = −12→12
8909 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.1649P] where P = (Fo2 + 2Fc2)/3
3018 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8362 (2) 0.46853 (19) 0.37248 (18) 0.0520 (4)
H1 0.8499 0.5608 0.3908 0.062*
C2 0.9305 (2) 0.4331 (2) 0.29625 (17) 0.0530 (5)
H2 1.0085 0.5002 0.2655 0.064*
C3 0.9066 (3) 0.2958 (2) 0.26675 (17) 0.0557 (5)
H3 0.9672 0.2682 0.2144 0.067*
C4 0.7921 (3) 0.1992 (2) 0.31520 (17) 0.0525 (4)
H4 0.7732 0.1056 0.2957 0.063*
C5 0.7062 (2) 0.24577 (17) 0.39383 (15) 0.0413 (4)
C6 0.5610 (2) 0.02730 (17) 0.45799 (16) 0.0433 (4)
C7 0.2643 (3) 0.1234 (2) 0.11856 (19) 0.0686 (6)
H7 0.3133 0.2017 0.0881 0.082*
C8 0.2515 (4) −0.0019 (2) 0.0534 (2) 0.0805 (7)
H8 0.2911 −0.0087 −0.0191 0.097*
C9 0.1791 (4) −0.1164 (2) 0.0977 (2) 0.0880 (8)
H9 0.1681 −0.2033 0.0552 0.106*
C10 0.1222 (3) −0.1038 (2) 0.20524 (19) 0.0662 (6)
H10 0.0731 −0.1809 0.2371 0.079*
C11 0.1405 (2) 0.02693 (16) 0.26431 (14) 0.0386 (4)
C12 0.0128 (2) −0.03698 (15) 0.43944 (14) 0.0364 (3)
C13 0.7504 (3) 0.5115 (2) 0.97931 (17) 0.0646 (6)
H13 0.8479 0.5692 1.0504 0.078*
C14 0.6308 (3) 0.3874 (2) 0.99039 (17) 0.0631 (5)
H14 0.6460 0.3612 1.0664 0.076*
C15 0.4884 (3) 0.3032 (2) 0.88626 (18) 0.0660 (6)
H15 0.4042 0.2175 0.8901 0.079*
C16 0.4690 (3) 0.34467 (18) 0.77573 (16) 0.0521 (5)
H16 0.3719 0.2886 0.7040 0.063*
C17 0.5974 (2) 0.47196 (15) 0.77397 (13) 0.0347 (3)
C18 0.48440 (19) 0.45519 (14) 0.54712 (13) 0.0312 (3)
N1 0.72567 (19) 0.37762 (14) 0.42180 (14) 0.0472 (4)
N2 0.59256 (19) 0.15935 (14) 0.45411 (14) 0.0457 (4)
H2A 0.5362 0.1959 0.4934 0.055*
N3 0.2108 (2) 0.14008 (15) 0.22304 (13) 0.0505 (4)
N4 0.08990 (17) 0.05422 (13) 0.37520 (12) 0.0385 (3)
H4A 0.1109 0.1402 0.4060 0.046*
N5 0.7374 (2) 0.55612 (16) 0.87343 (13) 0.0531 (4)
N6 0.59098 (16) 0.52565 (12) 0.66636 (11) 0.0351 (3)
H6 0.6628 0.6127 0.6784 0.042*
O1 0.62022 (18) −0.04585 (13) 0.40434 (13) 0.0584 (4)
O2 −0.03443 (16) −0.16334 (11) 0.41046 (11) 0.0501 (3)
O3 0.37249 (15) 0.33253 (10) 0.51223 (9) 0.0415 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0499 (10) 0.0450 (10) 0.0644 (11) 0.0197 (8) 0.0202 (9) 0.0213 (8)
C2 0.0461 (10) 0.0640 (12) 0.0538 (10) 0.0229 (9) 0.0177 (8) 0.0273 (9)
C3 0.0585 (11) 0.0729 (13) 0.0507 (10) 0.0377 (10) 0.0235 (9) 0.0228 (9)
C4 0.0628 (11) 0.0524 (10) 0.0545 (10) 0.0336 (9) 0.0223 (9) 0.0177 (8)
C5 0.0377 (8) 0.0414 (9) 0.0461 (9) 0.0190 (7) 0.0099 (7) 0.0139 (7)
C6 0.0408 (9) 0.0362 (8) 0.0523 (9) 0.0183 (7) 0.0095 (7) 0.0116 (7)
C7 0.1028 (17) 0.0534 (11) 0.0552 (11) 0.0248 (11) 0.0486 (12) 0.0216 (9)
C8 0.123 (2) 0.0638 (13) 0.0675 (13) 0.0354 (13) 0.0651 (14) 0.0193 (11)
C9 0.144 (2) 0.0524 (12) 0.0840 (16) 0.0407 (14) 0.0736 (17) 0.0163 (11)
C10 0.1025 (16) 0.0397 (9) 0.0627 (12) 0.0248 (10) 0.0487 (12) 0.0162 (9)
C11 0.0413 (8) 0.0363 (8) 0.0350 (8) 0.0117 (7) 0.0144 (6) 0.0106 (6)
C12 0.0348 (8) 0.0306 (8) 0.0382 (8) 0.0075 (6) 0.0119 (6) 0.0110 (6)
C13 0.0660 (12) 0.0720 (13) 0.0381 (9) 0.0167 (10) 0.0012 (8) 0.0205 (9)
C14 0.0823 (14) 0.0694 (13) 0.0403 (10) 0.0300 (11) 0.0168 (9) 0.0304 (9)
C15 0.0864 (15) 0.0509 (11) 0.0469 (11) 0.0109 (10) 0.0205 (10) 0.0253 (9)
C16 0.0639 (11) 0.0433 (9) 0.0350 (8) 0.0078 (8) 0.0133 (8) 0.0149 (7)
C17 0.0420 (8) 0.0353 (8) 0.0308 (7) 0.0176 (7) 0.0145 (6) 0.0123 (6)
C18 0.0351 (7) 0.0296 (7) 0.0309 (7) 0.0125 (6) 0.0151 (6) 0.0104 (6)
N1 0.0447 (8) 0.0396 (8) 0.0619 (9) 0.0187 (6) 0.0209 (7) 0.0175 (7)
N2 0.0473 (8) 0.0368 (7) 0.0613 (9) 0.0224 (6) 0.0219 (7) 0.0164 (6)
N3 0.0719 (10) 0.0409 (8) 0.0412 (7) 0.0186 (7) 0.0299 (7) 0.0159 (6)
N4 0.0484 (8) 0.0292 (6) 0.0365 (7) 0.0121 (6) 0.0186 (6) 0.0102 (5)
N5 0.0540 (9) 0.0531 (9) 0.0366 (7) 0.0098 (7) 0.0052 (6) 0.0164 (6)
N6 0.0408 (7) 0.0291 (6) 0.0311 (6) 0.0088 (5) 0.0122 (5) 0.0112 (5)
O1 0.0672 (8) 0.0431 (7) 0.0791 (9) 0.0310 (6) 0.0337 (7) 0.0199 (6)
O2 0.0628 (8) 0.0309 (6) 0.0526 (7) 0.0104 (5) 0.0290 (6) 0.0117 (5)
O3 0.0489 (6) 0.0306 (6) 0.0343 (6) 0.0053 (5) 0.0129 (5) 0.0108 (4)

Geometric parameters (Å, °)

C1—N1 1.336 (2) C11—N3 1.326 (2)
C1—C2 1.373 (3) C11—N4 1.399 (2)
C1—H1 0.9300 C12—O2 1.2149 (18)
C2—C3 1.375 (3) C12—N4 1.3411 (18)
C2—H2 0.9300 C12—C12ii 1.537 (3)
C3—C4 1.378 (3) C13—N5 1.337 (2)
C3—H3 0.9300 C13—C14 1.363 (3)
C4—C5 1.386 (2) C13—H13 0.9300
C4—H4 0.9300 C14—C15 1.361 (3)
C5—N1 1.330 (2) C14—H14 0.9300
C5—N2 1.410 (2) C15—C16 1.370 (2)
C6—O1 1.219 (2) C15—H15 0.9300
C6—N2 1.342 (2) C16—C17 1.378 (2)
C6—C6i 1.535 (3) C16—H16 0.9300
C7—N3 1.331 (2) C17—N5 1.323 (2)
C7—C8 1.365 (3) C17—N6 1.4054 (18)
C7—H7 0.9300 C18—O3 1.2193 (18)
C8—C9 1.360 (3) C18—N6 1.3384 (19)
C8—H8 0.9300 C18—C18iii 1.523 (3)
C9—C10 1.374 (3) N2—H2A 0.8600
C9—H9 0.9300 N4—H4A 0.8600
C10—C11 1.377 (2) N6—H6 0.8600
C10—H10 0.9300
N1—C1—C2 123.58 (17) O2—C12—N4 126.93 (14)
N1—C1—H1 118.2 O2—C12—C12ii 121.30 (15)
C2—C1—H1 118.2 N4—C12—C12ii 111.77 (15)
C1—C2—C3 118.10 (17) N5—C13—C14 124.56 (18)
C1—C2—H2 121.0 N5—C13—H13 117.7
C3—C2—H2 121.0 C14—C13—H13 117.7
C2—C3—C4 119.68 (17) C15—C14—C13 117.60 (16)
C2—C3—H3 120.2 C15—C14—H14 121.2
C4—C3—H3 120.2 C13—C14—H14 121.2
C3—C4—C5 117.98 (17) C14—C15—C16 119.96 (17)
C3—C4—H4 121.0 C14—C15—H15 120.0
C5—C4—H4 121.0 C16—C15—H15 120.0
N1—C5—C4 123.16 (15) C15—C16—C17 118.07 (17)
N1—C5—N2 113.25 (14) C15—C16—H16 121.0
C4—C5—N2 123.58 (15) C17—C16—H16 121.0
O1—C6—N2 126.53 (16) N5—C17—C16 123.44 (14)
O1—C6—C6i 120.90 (18) N5—C17—N6 113.46 (13)
N2—C6—C6i 112.56 (18) C16—C17—N6 123.09 (14)
N3—C7—C8 123.90 (18) O3—C18—N6 126.12 (12)
N3—C7—H7 118.1 O3—C18—C18iii 121.04 (16)
C8—C7—H7 118.1 N6—C18—C18iii 112.84 (15)
C9—C8—C7 117.97 (19) C5—N1—C1 117.47 (15)
C9—C8—H8 121.0 C6—N2—C5 128.27 (15)
C7—C8—H8 121.0 C6—N2—H2A 115.9
C8—C9—C10 120.0 (2) C5—N2—H2A 115.9
C8—C9—H9 120.0 C11—N3—C7 117.05 (15)
C10—C9—H9 120.0 C12—N4—C11 128.10 (13)
C9—C10—C11 117.76 (17) C12—N4—H4A 115.9
C9—C10—H10 121.1 C11—N4—H4A 115.9
C11—C10—H10 121.1 C17—N5—C13 116.37 (15)
N3—C11—C10 123.32 (15) C18—N6—C17 126.63 (12)
N3—C11—N4 113.26 (14) C18—N6—H6 116.7
C10—C11—N4 123.41 (14) C17—N6—H6 116.7

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3 0.86 2.39 3.176 (2) 153
N4—H4A···O3 0.86 2.27 2.898 (2) 130
N6—H6···N3iii 0.86 2.39 3.188 (2) 155

Symmetry codes: (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2234).

References

  1. Bencini, A., Benelli, C., Fabretti, A. C., Franchini, G. & Gatteschi, D. (1986). Inorg. Chem. 25, 1063–1066.
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Hsu, Y.-F. & Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 1488–1493.
  5. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  8. Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010294/ez2234sup1.cif

e-67-0o972-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010294/ez2234Isup2.hkl

e-67-0o972-Isup2.hkl (145.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES