Abstract
In the title compound, C10H5FO3, the chromenone ring is essentially planar, with a maximum deviation of 0.039 (1) Å. The dihedral angle between the fluoro-subsituted benzene ring and the pyran ring is 1.92 (4)°. In the crystal, molecules are connected via weak intermolecular C—H⋯O hydrogen bonds, forming supramolecular ribbons along the b axis. These ribbons are stacked down the a axis.
Related literature
For the biological activity of chromones, see: Masami et al. (2007 ▶); Ellis et al. (1978 ▶); Raj et al. (2010 ▶); Nawrot-Modranka et al. (2006 ▶); Gomes et al. (2010 ▶). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 ▶).
Experimental
Crystal data
C10H5FO3
M r = 192.14
Monoclinic,
a = 3.7294 (1) Å
b = 6.2347 (2) Å
c = 34.6518 (11) Å
β = 90.740 (1)°
V = 805.65 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.13 mm−1
T = 100 K
0.52 × 0.20 × 0.08 mm
Data collection
Bruker APEXII DUO CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.935, T max = 0.990
20369 measured reflections
2937 independent reflections
2622 reflections with I > 2σ(I)
R int = 0.022
Refinement
R[F 2 > 2σ(F 2)] = 0.042
wR(F 2) = 0.125
S = 1.03
2937 reflections
127 parameters
H-atom parameters constrained
Δρmax = 0.68 e Å−3
Δρmin = −0.18 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007045/rz2562sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007045/rz2562Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1A⋯O3i | 0.93 | 2.39 | 3.2147 (11) | 148 |
| C3—H3A⋯O2ii | 0.93 | 2.29 | 3.1419 (12) | 152 |
| C10—H10A⋯O3iii | 0.93 | 2.58 | 3.3010 (14) | 135 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
MA, CWO and HO thank Universiti Sains Malaysia (USM) for providing necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. MA also thanks USM for the award of post-doctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.
supplementary crystallographic information
Comment
A large number of chromones and their derivatives possess a broad range of biological activities such as anti-HIV (Masami et al., 2007), antiallergic (Ellis et al., 1978), anticancer (Raj et al., 2010), antibacterial (Nawrot-Modranka et al., 2006), antiviral and antioxidant (Gomes et al., 2010) properties. We report here the structure of a newly synthesized chromone derivative, 7-fluoro-3-formylchromone. It was synthesized by own experimental process and structure elucidation was primarily carried out by elemental analysis, 1H NMR and IR spectroscopic techniques.
The asymmetric unit of the title compound is shown in Fig. 1. The chromenone (O1/C1–C9) ring is essentially planar, with a maximum deviation of 0.039 (1) Å for atom C8. The dihedral angle between the fluoro-substituted benzene (C2–C7) ring and the pyran (O1/C1/C2/C7–C9) ring is 1.92 (4)°.
In the crystal structure (Fig. 2), adjacent molecules are connected via intermolecular C1—H1A···O3; C3—H3A···O2 and C10—H10A···O3 (Table 1) hydrogen bonds to form supramolecular ribbons along the b axis. These ribbons are stacked down the a axis.
Experimental
To a well stirred solution of 4-fluoro-2-hydroxyacetophenone (6.5 mmol, 1.0 g) in DMF (4 ml), POCl3 (26.1 mmol, 2.4 ml) was added dropwise with stirring in ice bath. After 15 minutes, the ice bath was removed and the reaction mixture was continued to be stirred at room temperature for overnight. The resultant reaction mixture was then decomposed by crushed ice and the final product was collected by filtration, washed with ethanol-water and recrystallized from acetone to afford the title compound in 75% yield.
Refinement
All the H atoms were positioned geometrically [ C–H = 0.93 Å ] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The highest peak in the final difference map was found at a distance of 0.68 Å from C3 and the deepest hole was 0.79 Å from C2.
Figures
Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Crystal packing of the title compound viewed along the a axis, showing a hydrogen-bonded (dashed lines) network.
Crystal data
| C10H5FO3 | F(000) = 392 |
| Mr = 192.14 | Dx = 1.584 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 9357 reflections |
| a = 3.7294 (1) Å | θ = 3.3–32.6° |
| b = 6.2347 (2) Å | µ = 0.13 mm−1 |
| c = 34.6518 (11) Å | T = 100 K |
| β = 90.740 (1)° | Plate, yellow |
| V = 805.65 (4) Å3 | 0.52 × 0.20 × 0.08 mm |
| Z = 4 |
Data collection
| Bruker APEXII DUO CCD area-detector diffractometer | 2937 independent reflections |
| Radiation source: fine-focus sealed tube | 2622 reflections with I > 2σ(I) |
| graphite | Rint = 0.022 |
| φ and ω scans | θmax = 32.6°, θmin = 1.2° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
| Tmin = 0.935, Tmax = 0.990 | k = −9→9 |
| 20369 measured reflections | l = −51→52 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.125 | H-atom parameters constrained |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0705P)2 + 0.3007P] where P = (Fo2 + 2Fc2)/3 |
| 2937 reflections | (Δ/σ)max = 0.001 |
| 127 parameters | Δρmax = 0.68 e Å−3 |
| 0 restraints | Δρmin = −0.18 e Å−3 |
Special details
| Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| F1 | 0.11979 (18) | 0.11518 (12) | 0.279011 (18) | 0.02856 (16) | |
| O1 | 0.12537 (18) | 0.31079 (11) | 0.409211 (19) | 0.01826 (15) | |
| O2 | 0.6366 (2) | 0.87750 (12) | 0.38719 (2) | 0.02381 (17) | |
| O3 | 0.2976 (2) | 0.75507 (14) | 0.49717 (2) | 0.02861 (18) | |
| C1 | 0.1927 (2) | 0.45457 (15) | 0.43718 (2) | 0.01768 (17) | |
| H1A | 0.1255 | 0.4194 | 0.4621 | 0.021* | |
| C2 | 0.2137 (2) | 0.36246 (14) | 0.37194 (2) | 0.01554 (16) | |
| C3 | 0.1252 (2) | 0.20906 (15) | 0.34431 (3) | 0.01823 (17) | |
| H3A | 0.0180 | 0.0796 | 0.3508 | 0.022* | |
| C4 | 0.2053 (2) | 0.25964 (16) | 0.30674 (3) | 0.01986 (18) | |
| C5 | 0.3659 (2) | 0.45082 (17) | 0.29548 (3) | 0.02122 (19) | |
| H5A | 0.4134 | 0.4783 | 0.2697 | 0.025* | |
| C6 | 0.4525 (2) | 0.59831 (16) | 0.32376 (3) | 0.01913 (18) | |
| H6A | 0.5617 | 0.7268 | 0.3170 | 0.023* | |
| C7 | 0.3775 (2) | 0.55659 (14) | 0.36268 (2) | 0.01570 (16) | |
| C8 | 0.4695 (2) | 0.71039 (14) | 0.39326 (3) | 0.01698 (17) | |
| C9 | 0.3518 (2) | 0.64737 (15) | 0.43164 (3) | 0.01704 (17) | |
| C10 | 0.4046 (3) | 0.79260 (17) | 0.46468 (3) | 0.02236 (19) | |
| H10A | 0.5266 | 0.9205 | 0.4606 | 0.027* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| F1 | 0.0312 (3) | 0.0358 (4) | 0.0187 (3) | −0.0032 (3) | 0.0015 (2) | −0.0083 (2) |
| O1 | 0.0214 (3) | 0.0184 (3) | 0.0151 (3) | −0.0049 (2) | 0.0026 (2) | 0.0025 (2) |
| O2 | 0.0249 (3) | 0.0205 (3) | 0.0260 (3) | −0.0073 (3) | 0.0031 (3) | 0.0042 (3) |
| O3 | 0.0367 (4) | 0.0295 (4) | 0.0198 (3) | −0.0090 (3) | 0.0056 (3) | −0.0039 (3) |
| C1 | 0.0181 (4) | 0.0201 (4) | 0.0149 (3) | −0.0024 (3) | 0.0014 (3) | 0.0023 (3) |
| C2 | 0.0140 (3) | 0.0185 (4) | 0.0141 (3) | −0.0006 (3) | 0.0022 (3) | 0.0030 (3) |
| C3 | 0.0164 (4) | 0.0203 (4) | 0.0180 (4) | −0.0014 (3) | 0.0014 (3) | 0.0008 (3) |
| C4 | 0.0169 (4) | 0.0264 (4) | 0.0162 (4) | 0.0007 (3) | 0.0000 (3) | −0.0022 (3) |
| C5 | 0.0182 (4) | 0.0300 (5) | 0.0155 (4) | 0.0007 (3) | 0.0024 (3) | 0.0044 (3) |
| C6 | 0.0162 (4) | 0.0233 (4) | 0.0179 (4) | −0.0007 (3) | 0.0025 (3) | 0.0064 (3) |
| C7 | 0.0133 (3) | 0.0178 (4) | 0.0160 (3) | −0.0004 (3) | 0.0012 (3) | 0.0037 (3) |
| C8 | 0.0145 (3) | 0.0178 (4) | 0.0187 (4) | −0.0007 (3) | 0.0016 (3) | 0.0043 (3) |
| C9 | 0.0164 (3) | 0.0185 (4) | 0.0162 (3) | −0.0023 (3) | 0.0006 (3) | 0.0013 (3) |
| C10 | 0.0244 (4) | 0.0230 (4) | 0.0198 (4) | −0.0041 (3) | 0.0010 (3) | −0.0013 (3) |
Geometric parameters (Å, °)
| F1—C4 | 1.3521 (11) | C3—H3A | 0.9300 |
| O1—C1 | 1.3414 (11) | C4—C5 | 1.3921 (14) |
| O1—C2 | 1.3751 (10) | C5—C6 | 1.3791 (14) |
| O2—C8 | 1.2334 (11) | C5—H5A | 0.9300 |
| O3—C10 | 1.2218 (12) | C6—C7 | 1.4052 (12) |
| C1—C9 | 1.3551 (12) | C6—H6A | 0.9300 |
| C1—H1A | 0.9300 | C7—C8 | 1.4664 (13) |
| C2—C3 | 1.3902 (12) | C8—C9 | 1.4599 (12) |
| C2—C7 | 1.3950 (12) | C9—C10 | 1.4711 (13) |
| C3—C4 | 1.3759 (12) | C10—H10A | 0.9300 |
| C1—O1—C2 | 118.49 (7) | C5—C6—C7 | 120.72 (9) |
| O1—C1—C9 | 124.66 (8) | C5—C6—H6A | 119.6 |
| O1—C1—H1A | 117.7 | C7—C6—H6A | 119.6 |
| C9—C1—H1A | 117.7 | C2—C7—C6 | 118.33 (8) |
| O1—C2—C3 | 115.35 (8) | C2—C7—C8 | 120.02 (8) |
| O1—C2—C7 | 122.02 (8) | C6—C7—C8 | 121.65 (8) |
| C3—C2—C7 | 122.63 (8) | O2—C8—C9 | 122.77 (9) |
| C4—C3—C2 | 116.20 (9) | O2—C8—C7 | 122.90 (8) |
| C4—C3—H3A | 121.9 | C9—C8—C7 | 114.32 (8) |
| C2—C3—H3A | 121.9 | C1—C9—C8 | 120.34 (8) |
| F1—C4—C3 | 117.88 (9) | C1—C9—C10 | 119.36 (8) |
| F1—C4—C5 | 118.01 (8) | C8—C9—C10 | 120.30 (8) |
| C3—C4—C5 | 124.11 (9) | O3—C10—C9 | 123.87 (9) |
| C6—C5—C4 | 118.01 (8) | O3—C10—H10A | 118.1 |
| C6—C5—H5A | 121.0 | C9—C10—H10A | 118.1 |
| C4—C5—H5A | 121.0 | ||
| C2—O1—C1—C9 | −1.81 (13) | C5—C6—C7—C2 | 0.03 (13) |
| C1—O1—C2—C3 | −177.90 (8) | C5—C6—C7—C8 | 179.56 (8) |
| C1—O1—C2—C7 | 1.50 (12) | C2—C7—C8—O2 | 174.82 (8) |
| O1—C2—C3—C4 | 178.80 (8) | C6—C7—C8—O2 | −4.70 (14) |
| C7—C2—C3—C4 | −0.59 (13) | C2—C7—C8—C9 | −4.23 (12) |
| C2—C3—C4—F1 | −179.36 (8) | C6—C7—C8—C9 | 176.24 (8) |
| C2—C3—C4—C5 | 0.09 (14) | O1—C1—C9—C8 | −1.12 (14) |
| F1—C4—C5—C6 | 179.89 (8) | O1—C1—C9—C10 | 178.88 (9) |
| C3—C4—C5—C6 | 0.45 (15) | O2—C8—C9—C1 | −175.04 (9) |
| C4—C5—C6—C7 | −0.49 (14) | C7—C8—C9—C1 | 4.01 (12) |
| O1—C2—C7—C6 | −178.81 (8) | O2—C8—C9—C10 | 4.95 (14) |
| C3—C2—C7—C6 | 0.54 (13) | C7—C8—C9—C10 | −175.99 (8) |
| O1—C2—C7—C8 | 1.65 (13) | C1—C9—C10—O3 | −3.67 (15) |
| C3—C2—C7—C8 | −178.99 (8) | C8—C9—C10—O3 | 176.33 (10) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1A···O3i | 0.93 | 2.39 | 3.2147 (11) | 148 |
| C3—H3A···O2ii | 0.93 | 2.29 | 3.1419 (12) | 152 |
| C10—H10A···O3iii | 0.93 | 2.58 | 3.3010 (14) | 135 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y−1, z; (iii) −x+1, −y+2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2562).
References
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
- Ellis, G. P., Becket, G. J. P., Shaw, D., Wilson, H. K., Vardey, C. J. & Skidmore, I. F. (1978). J. Med. Chem. 21, 1120–1126. [DOI] [PubMed]
- Gomes, A., Freitas, M., Fernandes, E. & Lima, J. L. F. C. (2010). Mini-Rev. Med. Chem. 10, 1–7. [DOI] [PubMed]
- Masami, K., Toru, T., Hiroyuki, K., Satoru, T., Hideki, N. & Hiroshi, S. (2007). In Vivo, 21, 829–834.
- Nawrot-Modranka, J., Nawrot, E. & Graczyk, J. (2006). Eur. J. Med Chem. 41, 1301–1309. [DOI] [PubMed]
- Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007045/rz2562sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007045/rz2562Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


