Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 5;67(Pt 4):o787. doi: 10.1107/S1600536811007471

3,4,5-Trihy­droxy­benzoic acid

Namon Hirun a, Saowanit Saithong b, Chaveng Pakawatchai b, Vimon Tantishaiyakul a,*
PMCID: PMC3099763  PMID: 21754078

Abstract

In the title compound, C7H6O5, the three hy­droxy groups on the ring are oriented in the same direction. There are two intra­molecular O—H⋯O hydrogen bonds in the ring. In the crystal, there are several inter­molecular O—H⋯O hydrogen bonds and a short contact of 2.7150 (18) Å between the O atoms of the para-OH groups of adjacent mol­ecules.

Related literature

For the biological activity of the title compound, see: Gomes et al. (2003); Priscilla & Prince (2009); Lu et al. (2010). For the structure of gallic acid monohydrate, see: Okabe et al. (2001); Jiang et al. (2000); Billes et al. (2007).graphic file with name e-67-0o787-scheme1.jpg

Experimental

Crystal data

  • C7H6O5

  • M r = 170.12

  • Monoclinic, Inline graphic

  • a = 25.629 (2) Å

  • b = 4.9211 (4) Å

  • c = 11.2217 (9) Å

  • β = 106.251 (1)°

  • V = 1358.77 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.19 × 0.11 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.916, T max = 1.000

  • 7171 measured reflections

  • 1254 independent reflections

  • 1172 reflections with I > 2s(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.091

  • S = 1.06

  • 1254 reflections

  • 121 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007471/fj2397sup1.cif

e-67-0o787-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007471/fj2397Isup2.hkl

e-67-0o787-Isup2.hkl (62.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 (1) 2.19 (2) 2.6625 (14) 117 (1)
O3—H3⋯O2 0.82 (1) 2.35 (2) 2.7464 (14) 110 (1)
O1—H1⋯O5i 0.84 (1) 1.89 (2) 2.7324 (13) 176 (2)
O3—H3⋯O3ii 0.82 (1) 2.04 (2) 2.8167 (9) 157 (2)
O4—H4⋯O5iii 0.85 (2) 1.81 (2) 2.6570 (13) 175 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Thailand Research Fund through the Royal Golden Jubilee PhD Program under grant No. PHD/0259/2549, the Prince of Songkla University under grant No. PHA520036S and the National Research University Project of Thailand’s Office of the Higher Education Commission.

supplementary crystallographic information

Comment

Gallic acid, 3,4,5-trihydroxybenzoic acid, has been reported to have various biological activities such as antioxidant, antimutagenic, anticarcinogenic, antihyperglycemic and cardioprotective effects (Gomes et al., 2003; Priscilla & Prince, 2009; Lu et al., 2010). It has been shown that the activity of polyphenolic compounds, including gallic acid, is dependent on their structural characteristics (Gomes et al., 2003). Thus, the investigation of its crystal structure is important for a better understanding of its biological functions. Recently, different crystal structures of gallic acid monohydrate have been reported (Jiang et al., 2000; Okabe et al., 2001; Billes et al., 2007). Here, for the first time, the crystal structure of anhydrous gallic acid (I) was determined. The molecular structure of I is planar [Fig.1]. All the H atoms of the three hydroxy groups are oriented in the same direction.

The intra-hydrogen bonds are found between these hydroxy groups, O2···O1 = 2.6625 (14) and O3···O2 = 2.7464 (14)Å [Table.1]. This agrees with the report of Okabe et al. (2001). However, this orientation is inconsistent with those described by Billes et al. (2007) and Jiang et al. (2000), in which one H atom of the hydroxy group is oriented in the opposite direction to the others. The dissimilarity between I and the gallic acid monohydrate structure reported by Okabe is the different orientation of their carboxyl groups in relation to the direction of the three hydroxy groups.

The inter-hydrogen bonds in the crystal packing of I are found between oxygen atoms,O3···O3ii [2.8167 (9) Å, symmetry code (ii): 1/2 - x, y + 1/2 - z - 1/2], O1···O5i [2.7324 (13) Å, symmetry code (i): x, -y + 1, z + 1/2] and O4···O5iii [2.6570 (13) Å, symmetry code (iii): -x + 1, -y, -z] [Table 1]. Moreover, the short contact between the oxygen of the hydroxy groups of the adjacent molecule is observed, O2···O2vi [2.7150 (18) Å, symmetry code (vi): 1/2 - x, 2.5 - y, -z]. All intra- and intermolecular interactions including short contacts are depicted in Fig. 2 and the packing interactions as plotted down the b axis are shown in Fig. 3.

Experimental

Gallic acid monohydrate was obtained from Fluka Chemie GmbH (Buchs, Switzerland). The anhydrous gallic acid crystals for this X-ray structure study were obtained by dissolving gallic acid monohydrate in diethyl ether followed by a slow evaporation of the solvent.

Refinement

The structure was solved by direct methods refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms of oxygen atoms were located in a difference Fourier map and restrained to ride on their parent atoms, O—H = 0.82–0.85 Å with Uiso(H) = 1.2Ueq(O). The hydrogen atoms of C-sp2 atom are constrained, C—H = 0.96 Å with Uiso(H) = 1.2Ueq(C), respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure of I with thermal ellipsoids plotted at the 30% probability level.

Fig. 2.

Fig. 2.

The intra- and inter hydrogen bonds of I are shown. Symmetry code: i = x, 1 - y, 1/2 + z; ii = 1/2 - x, 1/2 + y, z - 1/2; iii = 1 - x, -y, -z; iv = x, 1 - y, z - 1/2; v = 1/2 - x, y - 1/2, -z - 1/2; vi = 1/2 - x, 2.5 - y, -z.

Fig. 3.

Fig. 3.

The packing interactions plotted down the b axis.

Crystal data

C7H6O5 F(000) = 704
Mr = 170.12 Dx = 1.663 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3476 reflections
a = 25.629 (2) Å θ = 3.3–28.1°
b = 4.9211 (4) Å µ = 0.14 mm1
c = 11.2217 (9) Å T = 293 K
β = 106.251 (1)° Hexagon, colourless
V = 1358.77 (19) Å3 0.30 × 0.19 × 0.11 mm
Z = 8

Data collection

Bruker APEX CCD area-detector diffractometer 1254 independent reflections
Radiation source: fine-focus sealed tube 1172 reflections with I > 2s(I)
graphite Rint = 0.022
Frames, each covering 0.3 ° in ω scans θmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −30→30
Tmin = 0.916, Tmax = 1.000 k = −5→5
7171 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.054P)2 + 0.7476P] where P = (Fo2 + 2Fc2)/3
1254 reflections (Δ/σ)max < 0.001
121 parameters Δρmax = 0.16 e Å3
4 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.40390 (5) 0.4849 (2) −0.00701 (11) 0.0251 (3)
C2 0.40861 (5) 0.6475 (3) 0.09733 (11) 0.0267 (3)
H2A 0.4380 0.6271 0.1674 0.032*
C3 0.36900 (5) 0.8389 (3) 0.09502 (11) 0.0256 (3)
C4 0.32438 (5) 0.8667 (2) −0.00919 (11) 0.0249 (3)
C5 0.32041 (5) 0.7058 (2) −0.11289 (11) 0.0247 (3)
C6 0.36006 (5) 0.5156 (3) −0.11223 (12) 0.0262 (3)
H6A 0.3575 0.4083 −0.1819 0.031*
C7 0.44558 (5) 0.2786 (2) −0.00657 (11) 0.0262 (3)
O1 0.36873 (4) 1.0116 (2) 0.18952 (9) 0.0367 (3)
H1 0.3935 (6) 0.969 (4) 0.2539 (15) 0.044*
O2 0.28434 (4) 1.0485 (2) −0.01206 (10) 0.0352 (3)
H2 0.2920 (6) 1.127 (3) 0.0553 (13) 0.042*
O3 0.27680 (4) 0.7268 (2) −0.21619 (9) 0.0334 (3)
H3 0.2610 (7) 0.872 (3) −0.2151 (16) 0.040*
O4 0.48474 (4) 0.2647 (2) 0.09722 (9) 0.0392 (3)
H4 0.5076 (7) 0.143 (3) 0.0928 (17) 0.047*
O5 0.44465 (4) 0.12950 (19) −0.09537 (8) 0.0314 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0237 (6) 0.0240 (6) 0.0263 (6) 0.0027 (5) 0.0050 (5) 0.0020 (5)
C2 0.0244 (6) 0.0292 (7) 0.0234 (6) 0.0041 (5) 0.0015 (5) 0.0025 (5)
C3 0.0284 (6) 0.0248 (6) 0.0230 (6) 0.0007 (5) 0.0062 (5) 0.0000 (5)
C4 0.0224 (6) 0.0219 (6) 0.0301 (7) 0.0036 (5) 0.0070 (5) 0.0028 (5)
C5 0.0214 (6) 0.0236 (6) 0.0254 (6) −0.0008 (5) 0.0005 (5) 0.0018 (5)
C6 0.0260 (6) 0.0252 (6) 0.0256 (6) 0.0021 (5) 0.0042 (5) −0.0027 (5)
C7 0.0238 (6) 0.0264 (7) 0.0263 (6) 0.0028 (5) 0.0037 (5) 0.0014 (5)
O1 0.0420 (6) 0.0387 (6) 0.0251 (5) 0.0130 (4) 0.0020 (4) −0.0060 (4)
O2 0.0309 (5) 0.0345 (6) 0.0369 (5) 0.0131 (4) 0.0038 (4) −0.0051 (4)
O3 0.0265 (5) 0.0293 (5) 0.0346 (5) 0.0063 (4) −0.0074 (4) −0.0050 (4)
O4 0.0332 (5) 0.0433 (6) 0.0324 (5) 0.0189 (4) −0.0054 (4) −0.0078 (4)
O5 0.0292 (5) 0.0322 (5) 0.0289 (5) 0.0101 (4) 0.0019 (4) −0.0037 (4)

Geometric parameters (Å, °)

C1—C6 1.3918 (17) C5—O3 1.3706 (14)
C1—C2 1.3951 (18) C5—C6 1.3800 (18)
C1—C7 1.4726 (17) C6—H6A 0.9300
C2—C3 1.3796 (18) C7—O5 1.2325 (15)
C2—H2A 0.9300 C7—O4 1.3093 (15)
C3—O1 1.3606 (15) O1—H1 0.844 (14)
C3—C4 1.3949 (17) O2—H2 0.821 (14)
C4—O2 1.3551 (15) O3—H3 0.824 (14)
C4—C5 1.3874 (18) O4—H4 0.850 (15)
C6—C1—C2 120.64 (11) O3—C5—C4 121.15 (11)
C6—C1—C7 119.36 (11) C6—C5—C4 120.10 (11)
C2—C1—C7 120.00 (11) C5—C6—C1 119.77 (12)
C3—C2—C1 119.02 (11) C5—C6—H6A 120.1
C3—C2—H2A 120.5 C1—C6—H6A 120.1
C1—C2—H2A 120.5 O5—C7—O4 121.64 (11)
O1—C3—C2 125.17 (11) O5—C7—C1 123.91 (11)
O1—C3—C4 114.22 (11) O4—C7—C1 114.45 (11)
C2—C3—C4 120.60 (11) C3—O1—H1 110.2 (12)
O2—C4—C5 118.66 (11) C4—O2—H2 107.7 (12)
O2—C4—C3 121.50 (11) C5—O3—H3 109.9 (12)
C5—C4—C3 119.85 (11) C7—O4—H4 110.8 (12)
O3—C5—C6 118.73 (11)
C6—C1—C2—C3 0.27 (19) O2—C4—C5—C6 −178.95 (11)
C7—C1—C2—C3 −179.80 (11) C3—C4—C5—C6 1.06 (19)
C1—C2—C3—O1 −179.47 (12) O3—C5—C6—C1 −178.09 (11)
C1—C2—C3—C4 1.08 (19) C4—C5—C6—C1 0.28 (19)
O1—C3—C4—O2 −1.25 (18) C2—C1—C6—C5 −0.96 (19)
C2—C3—C4—O2 178.26 (11) C7—C1—C6—C5 179.12 (11)
O1—C3—C4—C5 178.74 (11) C6—C1—C7—O5 0.77 (19)
C2—C3—C4—C5 −1.75 (19) C2—C1—C7—O5 −179.16 (12)
O2—C4—C5—O3 −0.62 (18) C6—C1—C7—O4 −179.37 (11)
C3—C4—C5—O3 179.39 (11) C2—C1—C7—O4 0.70 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.82 (1) 2.19 (2) 2.6625 (14) 117 (1)
O3—H3···O2 0.82 (1) 2.35 (2) 2.7464 (14) 110 (1)
O1—H1···O5i 0.84 (1) 1.89 (2) 2.7324 (13) 176 (2)
O3—H3···O3ii 0.82 (1) 2.04 (2) 2.8167 (9) 157 (2)
O4—H4···O5iii 0.85 (2) 1.81 (2) 2.6570 (13) 175 (2)

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1/2, y+1/2, −z−1/2; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2397).

References

  1. Billes, F., Mohammed-Ziegler, I. & Bombicz, P. (2007). Vib. Spectrosc. 43, 193–202.
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gomes, C. A., Girao da Cruz, T., Andrade, J. L., Milhazes, N., Borges, F. & Marques, M. P. M. (2003). J. Med. Chem. 46, 5395–5401. [DOI] [PubMed]
  5. Jiang, R.-W., Ming, D.-S., But, P. P. H. & Mak, T. C. W. (2000). Acta Cryst. C56, 594–595. [DOI] [PubMed]
  6. Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M. & To, S. S. T. (2010). Eur. J. Pharmacol. 641, 102–107. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Okabe, N., Kyoyama, H. & Suzuki, M. (2001). Acta Cryst. E57, o764–o766.
  9. Priscilla, D. H. & Prince, P. S. M. (2009). Chem. Biol. Interact. 179, 118–124. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007471/fj2397sup1.cif

e-67-0o787-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007471/fj2397Isup2.hkl

e-67-0o787-Isup2.hkl (62.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES