Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 23;67(Pt 4):o956. doi: 10.1107/S1600536811009354

6-Amino-3,4-dimethyl-4-phenyl-2H,4H-pyrano[2,3-c]pyrazole-5-carbonitrile

Nishith Saurav Topno a, Kandhasamy Kumaravel b, M Kannan a, Gnanasambandam Vasuki b, R Krishna a,*
PMCID: PMC3099764  PMID: 21754221

Abstract

In the title compound, C15H14N4O, the pyrazole ring is aligned at 88.23 (4)° with respect to the aromatic ring and at 3.75 (4)° with respect to the pyran ring. In the crystal, N—H⋯N hydrogen bonds link adjacent mol­ecules into a linear chain motif. C—H⋯N inter­actions are also observed.

Related literature

For the synthesis, see: Vasuki & Kumaravel (2008). For the use of related compounds in organic synthesis, see: Liang et al. (2009). For related structures, see: Kannan et al. (2010).graphic file with name e-67-0o956-scheme1.jpg

Experimental

Crystal data

  • C15H14N4O

  • M r = 266.3

  • Triclinic, Inline graphic

  • a = 6.682 (5) Å

  • b = 9.347 (5) Å

  • c = 11.078 (5) Å

  • α = 99.213 (5)°

  • β = 102.740 (5)°

  • γ = 97.767 (5)°

  • V = 655.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Bruker APEXII Kappa CCD detector diffractometer

  • 18424 measured reflections

  • 4996 independent reflections

  • 3169 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.173

  • S = 0.99

  • 4996 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009354/ng5120sup1.cif

e-67-0o956-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009354/ng5120Isup2.hkl

e-67-0o956-Isup2.hkl (244.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.86 2.27 3.129 (2) 173
N3—H3B⋯N4ii 0.86 2.26 3.087 (2) 160
C10—H10⋯N4iii 0.93 2.53 3.455 (3) 172
C14—H14A⋯N1iv 0.96 2.59 3.522 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge the Centre of Excellence in Bioinformatics, Pondicherry University, for providing the facilities for carrying out this work. RK and MK thank the University Grant Commission for providing a Major Research Project and Rajiv Gandhi National Fellowship, respectively. GV thanks the Department of Science and Technology, New Delhi, Government of India (grant No. SR/S5/GC-22/2007) for financial support.

supplementary crystallographic information

Comment

The pyrano pyrazole derivatives are widely used as organic intermediates (Liang et al., 2009) and are well known for their biological contribution as ChK1 inhibitors. In view of the growing importance of the pyrano pyrazole derivatives, we have synthesized the title compound by Rapid four-component reactions in water (Vasuki & Kumaravel, 2008) and the single-crystal structure analysis was undertaken.

In the title compound, the attached benzyl ring makes the dihedral angle of 88.23 (4) ° and orient in (+)-syn-clinal conforamtion with pyrazole ring, whereas the fused pyrazole ring makes 3.75 (4) ° dihedral angle and orient by an (+)-syn-periplanar conformation with respect to the pyran ring (Fig. 1). The methyl group is attached to C6 atom of pyran with an angle of 109.29 (11) °. Two N—H···N and C—H···N intermolecular hydrogen bond interactions (Fig. 2) are observed for maintaining the crystal packing (Fig. 3), in which the N3—H···N4 intermolecular interaction are observed to form R22 (12) ring motifs (Fig. 4). The weak N—H···π intermolecular interaction is also observed for the stabilization of the crystal packing, with a bond distance of 3.382 (3) Å (Fig. 5).

Experimental

The title compound was prepared by the successive addition of acetophenone 2 (0.240 g, 2 mmol), malononitrile (0.132 g, 2 mmol) and piperidine (5 mol%) to a stirred aqueous mixture of hydrazine hydrate 96% 1 (0.107 g, 2 mmol) and ethyl acetoacetate 2 (0.520 g, 2 mmol) at room temperature under an open atmosphere with vigorous stirring for 5–10 min. The precipitated solid was then filtered, followed by washing with water and then with a mixture of ethyl acetate/hexane (20:80). The product obtained was pure by TLC and 1H NMR spectroscopy. Nevertheless, the products were further purified by recrystallization from ethanol. Analysis calculated for 6-amino-3,4-dimethyl-4-phenyl-2H,4H-pyrano[2,3-c]pyrazole-5-carbonitrile showed that it has C15H14N4O.

Refinement

All hydrogen atoms were placed in calculated positions, with N—H=0.86 and C—H=0.93–0.97 and included in the final cycles of refinement using a riding model with U(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I), showing intermolecular hydrogen bonding interactions as dashed lines.

Fig. 3.

Fig. 3.

The crystal packing of Compound (I) viewed down the XO-axis, showing intermolecular hydrogen bonding interactions as dashed lines.

Fig. 4.

Fig. 4.

A view of R22 (12) ring motifs formed by N—H···N interaction between two molecules. The ring forming atoms are shown in ball and stick model and the Hydrogen bond are shown in green dashed lines.

Fig. 5.

Fig. 5.

The molecular interaction showing the weak N—H···pi interaction in Compound (I). Cg is a centroid of C8—C13 ring.

Crystal data

C15H14N4O Z = 2
Mr = 266.3 F(000) = 280
Triclinic, P1 Dx = 1.349 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 6.682 (5) Å Cell parameters from 4350 reflections
b = 9.347 (5) Å θ = 1.9–33.3°
c = 11.078 (5) Å µ = 0.09 mm1
α = 99.213 (5)° T = 293 K
β = 102.740 (5)° Prism, colourless
γ = 97.767 (5)° 0.22 × 0.20 × 0.16 mm
V = 655.6 (7) Å3

Data collection

Bruker APEXII Kappa CCD-detector diffractometer 3169 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
graphite θmax = 33.3°, θmin = 1.9°
Detector resolution: 0 pixels mm-1 h = −10→9
ω and φ scans k = −14→14
18424 measured reflections l = −17→16
4996 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.1309P] where P = (Fo2 + 2Fc2)/3
4996 reflections (Δ/σ)max = 0.014
183 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22065 (13) 0.57205 (11) 0.58851 (9) 0.0380 (2)
C2 0.52515 (18) 0.74174 (14) 0.57658 (11) 0.0306 (3)
N1 0.23543 (18) 0.67259 (14) 0.41251 (11) 0.0406 (3)
C6 0.64969 (18) 0.74989 (14) 0.70869 (12) 0.0304 (2)
C5 0.52503 (19) 0.63581 (14) 0.76101 (12) 0.0315 (3)
C7 0.6205 (2) 0.60943 (15) 0.88018 (13) 0.0377 (3)
C4 0.32984 (19) 0.55767 (14) 0.70373 (12) 0.0315 (3)
C3 0.32497 (19) 0.66098 (15) 0.52808 (12) 0.0320 (3)
C8 0.6664 (2) 0.90474 (14) 0.78630 (12) 0.0332 (3)
N3 0.21879 (18) 0.45814 (14) 0.74817 (12) 0.0439 (3)
H3A 0.0968 0.4142 0.7044 0.053*
H3B 0.2692 0.4379 0.8206 0.053*
N2 0.38757 (19) 0.76374 (15) 0.38430 (11) 0.0432 (3)
H2 0.3736 0.7912 0.3129 0.052*
N4 0.7004 (2) 0.59058 (17) 0.97741 (14) 0.0571 (4)
C1 0.5621 (2) 0.80702 (16) 0.47848 (13) 0.0376 (3)
C14 0.8640 (2) 0.70915 (18) 0.70847 (16) 0.0438 (3)
H14A 0.8467 0.6116 0.6599 0.066*
H14B 0.9397 0.7124 0.7936 0.066*
H14C 0.9401 0.7779 0.6718 0.066*
C13 0.4882 (2) 0.95084 (17) 0.81184 (15) 0.0442 (3)
H13 0.3617 0.8859 0.7841 0.053*
C9 0.8513 (3) 1.00406 (18) 0.82993 (17) 0.0517 (4)
H9 0.9738 0.9768 0.8150 0.062*
C10 0.8558 (3) 1.1452 (2) 0.89631 (18) 0.0639 (5)
H10 0.9817 1.2109 0.9251 0.077*
C15 0.7477 (3) 0.9053 (2) 0.46603 (16) 0.0536 (4)
H15A 0.8448 0.8469 0.4411 0.080*
H15B 0.8130 0.9701 0.5456 0.080*
H15C 0.7051 0.9625 0.4033 0.080*
C12 0.4943 (3) 1.0905 (2) 0.87732 (17) 0.0568 (4)
H12 0.3727 1.1186 0.8930 0.068*
C11 0.6797 (4) 1.18818 (19) 0.91953 (16) 0.0595 (5)
H11 0.6843 1.2826 0.9635 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0256 (4) 0.0500 (6) 0.0318 (5) −0.0082 (4) −0.0019 (3) 0.0142 (4)
C2 0.0260 (5) 0.0314 (6) 0.0302 (6) −0.0015 (4) 0.0032 (4) 0.0049 (4)
N1 0.0346 (6) 0.0480 (7) 0.0319 (6) −0.0072 (5) −0.0007 (4) 0.0116 (5)
C6 0.0233 (5) 0.0309 (6) 0.0322 (6) −0.0011 (4) 0.0012 (4) 0.0056 (4)
C5 0.0272 (5) 0.0296 (6) 0.0320 (6) −0.0019 (4) −0.0014 (4) 0.0073 (5)
C7 0.0308 (6) 0.0350 (7) 0.0397 (7) −0.0061 (5) −0.0026 (5) 0.0109 (5)
C4 0.0266 (5) 0.0338 (6) 0.0303 (6) 0.0004 (4) 0.0013 (4) 0.0072 (5)
C3 0.0273 (5) 0.0362 (6) 0.0290 (6) −0.0015 (4) 0.0029 (4) 0.0073 (5)
C8 0.0330 (6) 0.0318 (6) 0.0286 (6) −0.0033 (5) −0.0005 (5) 0.0066 (5)
N3 0.0331 (6) 0.0509 (7) 0.0396 (6) −0.0111 (5) −0.0038 (5) 0.0191 (5)
N2 0.0415 (6) 0.0517 (7) 0.0308 (6) −0.0082 (5) 0.0030 (5) 0.0144 (5)
N4 0.0472 (7) 0.0635 (9) 0.0477 (8) −0.0143 (6) −0.0114 (6) 0.0260 (7)
C1 0.0327 (6) 0.0407 (7) 0.0352 (7) −0.0031 (5) 0.0057 (5) 0.0075 (5)
C14 0.0271 (6) 0.0477 (8) 0.0529 (9) 0.0045 (5) 0.0052 (6) 0.0076 (7)
C13 0.0464 (8) 0.0385 (8) 0.0450 (8) 0.0025 (6) 0.0122 (6) 0.0034 (6)
C9 0.0384 (7) 0.0422 (8) 0.0600 (10) −0.0085 (6) −0.0025 (7) 0.0016 (7)
C10 0.0682 (12) 0.0430 (9) 0.0577 (11) −0.0165 (8) −0.0087 (9) −0.0007 (8)
C15 0.0450 (8) 0.0609 (10) 0.0498 (9) −0.0142 (7) 0.0090 (7) 0.0193 (8)
C12 0.0746 (12) 0.0457 (9) 0.0514 (10) 0.0136 (8) 0.0213 (9) 0.0032 (7)
C11 0.0922 (14) 0.0371 (8) 0.0405 (8) 0.0039 (9) 0.0083 (9) −0.0001 (6)

Geometric parameters (Å, °)

O1—C4 1.3602 (16) N2—C1 1.3465 (19)
O1—C3 1.3611 (16) N2—H2 0.8600
C2—C1 1.3799 (19) C1—C15 1.486 (2)
C2—C3 1.3885 (18) C14—H14A 0.9600
C2—C6 1.5001 (18) C14—H14B 0.9600
N1—C3 1.3164 (17) C14—H14C 0.9600
N1—N2 1.3595 (17) C13—C12 1.379 (2)
C6—C5 1.5289 (18) C13—H13 0.9300
C6—C14 1.531 (2) C9—C10 1.397 (3)
C6—C8 1.5369 (19) C9—H9 0.9300
C5—C4 1.3661 (18) C10—C11 1.357 (3)
C5—C7 1.4091 (19) C10—H10 0.9300
C7—N4 1.1440 (19) C15—H15A 0.9600
C4—N3 1.3340 (17) C15—H15B 0.9600
C8—C9 1.380 (2) C15—H15C 0.9600
C8—C13 1.390 (2) C12—C11 1.374 (3)
N3—H3A 0.8600 C12—H12 0.9300
N3—H3B 0.8600 C11—H11 0.9300
C4—O1—C3 115.59 (10) N2—C1—C2 106.17 (12)
C1—C2—C3 103.33 (11) N2—C1—C15 122.22 (14)
C1—C2—C6 133.30 (11) C2—C1—C15 131.61 (13)
C3—C2—C6 123.33 (11) C6—C14—H14A 109.5
C3—N1—N2 101.74 (11) C6—C14—H14B 109.5
C2—C6—C5 105.36 (10) H14A—C14—H14B 109.5
C2—C6—C14 110.78 (11) C6—C14—H14C 109.5
C5—C6—C14 109.28 (12) H14A—C14—H14C 109.5
C2—C6—C8 109.09 (10) H14B—C14—H14C 109.5
C5—C6—C8 109.98 (11) C12—C13—C8 121.64 (15)
C14—C6—C8 112.12 (10) C12—C13—H13 119.2
C4—C5—C7 116.92 (12) C8—C13—H13 119.2
C4—C5—C6 126.31 (11) C8—C9—C10 120.50 (17)
C7—C5—C6 116.77 (11) C8—C9—H9 119.8
N4—C7—C5 178.69 (15) C10—C9—H9 119.8
N3—C4—O1 110.00 (11) C11—C10—C9 121.11 (17)
N3—C4—C5 127.07 (12) C11—C10—H10 119.4
O1—C4—C5 122.93 (12) C9—C10—H10 119.4
N1—C3—O1 119.33 (11) C1—C15—H15A 109.5
N1—C3—C2 114.94 (12) C1—C15—H15B 109.5
O1—C3—C2 125.71 (12) H15A—C15—H15B 109.5
C9—C8—C13 117.40 (14) C1—C15—H15C 109.5
C9—C8—C6 123.01 (13) H15A—C15—H15C 109.5
C13—C8—C6 119.57 (11) H15B—C15—H15C 109.5
C4—N3—H3A 120.0 C11—C12—C13 120.16 (18)
C4—N3—H3B 120.0 C11—C12—H12 119.9
H3A—N3—H3B 120.0 C13—C12—H12 119.9
C1—N2—N1 113.80 (12) C10—C11—C12 119.19 (17)
C1—N2—H2 123.1 C10—C11—H11 120.4
N1—N2—H2 123.1 C12—C11—H11 120.4
C1—C2—C6—C5 −173.79 (14) C6—C2—C3—N1 176.69 (12)
C3—C2—C6—C5 8.91 (17) C1—C2—C3—O1 177.46 (13)
C1—C2—C6—C14 −55.7 (2) C6—C2—C3—O1 −4.6 (2)
C3—C2—C6—C14 126.98 (14) C2—C6—C8—C9 −111.80 (15)
C1—C2—C6—C8 68.17 (18) C5—C6—C8—C9 133.10 (14)
C3—C2—C6—C8 −109.13 (14) C14—C6—C8—C9 11.29 (19)
C2—C6—C5—C4 −7.33 (18) C2—C6—C8—C13 66.30 (15)
C14—C6—C5—C4 −126.40 (15) C5—C6—C8—C13 −48.80 (16)
C8—C6—C5—C4 110.12 (15) C14—C6—C8—C13 −170.61 (13)
C2—C6—C5—C7 173.06 (12) C3—N1—N2—C1 −0.42 (17)
C14—C6—C5—C7 53.99 (16) N1—N2—C1—C2 −0.34 (18)
C8—C6—C5—C7 −69.50 (15) N1—N2—C1—C15 179.23 (15)
C4—C5—C7—N4 −158 (8) C3—C2—C1—N2 0.91 (15)
C6—C5—C7—N4 21 (8) C6—C2—C1—N2 −176.77 (14)
C3—O1—C4—N3 −174.36 (12) C3—C2—C1—C15 −178.61 (17)
C3—O1—C4—C5 5.24 (19) C6—C2—C1—C15 3.7 (3)
C7—C5—C4—N3 −0.2 (2) C9—C8—C13—C12 0.5 (2)
C6—C5—C4—N3 −179.80 (13) C6—C8—C13—C12 −177.74 (14)
C7—C5—C4—O1 −179.72 (12) C13—C8—C9—C10 −0.4 (2)
C6—C5—C4—O1 0.7 (2) C6—C8—C9—C10 177.75 (15)
N2—N1—C3—O1 −177.77 (12) C8—C9—C10—C11 0.0 (3)
N2—N1—C3—C2 1.06 (17) C8—C13—C12—C11 −0.2 (3)
C4—O1—C3—N1 175.29 (12) C9—C10—C11—C12 0.3 (3)
C4—O1—C3—C2 −3.4 (2) C13—C12—C11—C10 −0.2 (3)
C1—C2—C3—N1 −1.29 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N1i 0.86 2.27 3.129 (2) 173
N3—H3B···N4ii 0.86 2.26 3.087 (2) 160
C10—H10···N4iii 0.93 2.53 3.455 (3) 172
C14—H14A···N1iv 0.96 2.59 3.522 (3) 163

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y+2, −z+2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5120).

References

  1. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Kannan, M., Kumaravel, K., Vasuki, G. & Krishna, R. (2010). Acta Cryst. E66, o1242. [DOI] [PMC free article] [PubMed]
  4. Liang, F., Cheng, X., Liu, J. & Liu, Q. (2009). Chem. Commun. pp. 3636–3538. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Vasuki, G. & Kumaravel, K. (2008). Tetrahedron Lett. 49, 5636–5638.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009354/ng5120sup1.cif

e-67-0o956-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009354/ng5120Isup2.hkl

e-67-0o956-Isup2.hkl (244.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES