Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o825. doi: 10.1107/S1600536811008099

4-Formyl­phenyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyran­oside

Thorsten Heidelberg a,, Rusnah Syahila Duali Hussen a, Nasrul Zamani Mohd Rodzi a, Seik Weng Ng a, Edward R T Tiekink a,*
PMCID: PMC3099765  PMID: 21754109

Abstract

The pyran­oside ring in the title compound, C21H24O11, has a chair conformation with the substituted benzene ring occupying an equatorial position. The crystal packing is dominated by C—H⋯O inter­actions that lead to the formation of supra­molecular layers in the ab plane.

Related literature

For synthesis, see: Bao et al. (2004); Hongu et al. (1999); Patil & Ravindranathan Kartha (2008). For the natural anti-oxidant glucosyl­ated resveratrol, see: La Torre et al. (2004). For the biological activity of related structures, see: Wen et al. (2008); Yan et al. (2009). For the structure of the isomeric allopyran­oside and galactose derivatives, see: Ye et al. (2009); Hussen et al. (2011). For conformational analysis, see: Cremer & Pople (1975).graphic file with name e-67-0o825-scheme1.jpg

Experimental

Crystal data

  • C21H24O11

  • M r = 452.40

  • Triclinic, Inline graphic

  • a = 5.7868 (2) Å

  • b = 8.9166 (3) Å

  • c = 11.4716 (3) Å

  • α = 102.473 (3)°

  • β = 93.481 (2)°

  • γ = 102.780 (3)°

  • V = 559.96 (3) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) T min = 0.919, T max = 1.000

  • 7392 measured reflections

  • 4097 independent reflections

  • 4087 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.115

  • S = 1.07

  • 4097 reflections

  • 293 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 1855 Friedel pairs

  • Flack parameter: -0.02(12)

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008099/ez2235sup1.cif

e-67-0o825-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008099/ez2235Isup2.hkl

e-67-0o825-Isup2.hkl (200.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 1.00 2.51 3.356 (2) 143
C3—H3⋯O5i 1.00 2.35 3.207 (2) 143
C6—H6A⋯O9ii 0.99 2.40 3.324 (2) 155
C8—H8C⋯O11iii 0.98 2.54 3.475 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This study was supported by the University of Malaya under research grant No. FS306/2007 C. The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The title compound, 4-formyl-phenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, a known species (Bao et al., 2004, Hongu et al., 1999; Patil et al.; 2008), which has been used for the preparation of potential pharmaceutically active compounds (Wen et al., 2008; Yan et al., 2009) was prepared as a precursor for the synthesis of glucosylated resveratrol, an interesting natural antioxidant (La Torre et al., 2004). The present analysis complements the recent report of the isomeric galactose derivative, see: Hussen et al. (2011).

The structure determination, Fig. 1, confirms the relative stereochemistry as well as the absolute structure, i.e. R, R, S, R and S for C1–C5, respectively. The pyranoside ring has a chair conformation as seen in the puckering parameters (Cremer & Pople, 1975): puckering amplitude (Q) = 0.6016 (18) Å, θ = 172.53 (16) °, and φ = 178.0 (14) °. Around the ring, all substituents are equatorial.

The crystal packing is dominated by C–H···O interactions, Table 1, involving carbonyl atoms as acceptors and methine-, methylene methyl-H as the donors. The carbonyl-O5 atom is bifurcated, spanning two methine-H atoms of a neighbouring molecule to form a supramolecular chain along the a axis. Altogether, the C–H···O interactions lead to the formation of supramolecular layers that stack along the c axis, Fig. 2.

The present report complements the structures reported recently for the isomeric allopyranoside (Ye et al., 2009) and galactose (Duali Hussen et al., 2011) derivatives.

Experimental

2,3,4,6-Tetra-O-acetyl-α-D-gluctopyranosyl bromide (4.0 g) and 4-hydroxybenzaldehyde (3.0 g) were dissolved in chloroform (30 ml) and the mixture treated with a solution of aqueous solution (15 ml) of sodium carbonate (2.7 g) and tetrabutylammonium bromide (0.7 g). The mixture was heated to reflux under vigorous stirring overnight, after which ethyl acetate was added and the organic layer was washed three times with sodium hydroxide solution (1 N) to remove remaining phenols. After drying the solution over magnesium sulfate and evaporation of the solvent, the target product (2.0 g, 45%) was obtained by crystallization from ethanol. Better crystals were obtained from 2-propanol.

1H NMR (400 MHz, CDCl3): δ 9.92 (s; CHO), 7.85 & 7.09 (AB syst; aromatic 4H), 5.34–5.26 & 5.24–5.14 (2 m, 2 x 2H; H1–H4), 4.27 (dd; H6a), 4.16 (dd; H6b), 3.92 (ddd; H5), 2.05–2.03 (3 s, 12H; Ac); 3J4,5 = 10.0 Hz, 3J5,6a = 5.0 Hz, 3J5,6 b = 2.5 Hz and 2J6 = 12.0 Hz.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure, showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents highlighting the stacking of layers. The C—H···O interactions are shown as orange dashed lines.

Crystal data

C21H24O11 Z = 1
Mr = 452.40 F(000) = 238
Triclinic, P1 Dx = 1.342 Mg m3
Hall symbol: P 1 Cu Kα radiation, λ = 1.54184 Å
a = 5.7868 (2) Å Cell parameters from 7285 reflections
b = 8.9166 (3) Å θ = 4.0–74.1°
c = 11.4716 (3) Å µ = 0.94 mm1
α = 102.473 (3)° T = 100 K
β = 93.481 (2)° Block, colourless
γ = 102.780 (3)° 0.30 × 0.30 × 0.20 mm
V = 559.96 (3) Å3

Data collection

Agilent Supernova Dual diffractometer with an Atlas detector 4097 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 4087 reflections with I > 2σ(I)
Mirror Rint = 0.021
Detector resolution: 10.4041 pixels mm-1 θmax = 74.3°, θmin = 4.0°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) k = −9→10
Tmin = 0.919, Tmax = 1.000 l = −13→14
7392 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0908P)2 + 0.072P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4097 reflections Δρmax = 0.27 e Å3
293 parameters Δρmin = −0.17 e Å3
3 restraints Absolute structure: Flack (1983), 1855 Friedel pairs
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9987 (2) 0.49931 (15) 0.49910 (11) 0.0174 (3)
O2 1.0120 (2) 0.81529 (16) 0.57609 (11) 0.0218 (3)
O3 0.7432 (3) 0.95346 (19) 0.63881 (14) 0.0305 (3)
O4 0.7892 (2) 0.55996 (15) 0.20730 (10) 0.0167 (3)
O5 0.4356 (2) 0.59974 (16) 0.26001 (12) 0.0208 (3)
O6 0.7723 (2) 0.23423 (15) 0.15960 (11) 0.0192 (3)
O7 1.0136 (3) 0.2794 (2) 0.01679 (14) 0.0385 (4)
O8 1.1640 (2) 0.17486 (15) 0.30105 (11) 0.0196 (3)
O9 0.8768 (3) −0.04604 (17) 0.28892 (15) 0.0297 (3)
O10 1.1933 (2) 0.31718 (15) 0.54454 (11) 0.0204 (3)
O11 2.0808 (3) 0.73176 (19) 0.92751 (14) 0.0330 (4)
C1 0.9617 (3) 0.5930 (2) 0.41525 (15) 0.0166 (3)
H1 1.1190 0.6460 0.3937 0.020*
C2 0.8116 (3) 0.4800 (2) 0.30264 (15) 0.0155 (3)
H2 0.6503 0.4316 0.3225 0.019*
C3 0.9368 (3) 0.3515 (2) 0.25138 (15) 0.0163 (3)
H3 1.0817 0.3980 0.2159 0.020*
C4 1.0071 (3) 0.2710 (2) 0.34749 (16) 0.0171 (3)
H4 0.8624 0.2051 0.3712 0.021*
C5 1.1452 (3) 0.3968 (2) 0.45629 (15) 0.0168 (3)
H5 1.2968 0.4572 0.4343 0.020*
C6 0.8401 (3) 0.7168 (2) 0.47781 (16) 0.0187 (3)
H6A 0.7979 0.7799 0.4222 0.022*
H6B 0.6930 0.6665 0.5080 0.022*
C7 0.9388 (3) 0.9279 (2) 0.65168 (16) 0.0220 (4)
C8 1.1278 (4) 1.0105 (3) 0.75474 (18) 0.0291 (4)
H8A 1.1138 1.1193 0.7845 0.044*
H8B 1.2855 1.0119 0.7277 0.044*
H8C 1.1077 0.9543 0.8194 0.044*
C9 0.5824 (3) 0.6053 (2) 0.19069 (15) 0.0163 (3)
C10 0.5674 (3) 0.6549 (3) 0.07482 (17) 0.0234 (4)
H10A 0.4287 0.7001 0.0685 0.035*
H10B 0.5507 0.5627 0.0077 0.035*
H10C 0.7128 0.7344 0.0721 0.035*
C11 0.8311 (4) 0.2113 (2) 0.04513 (17) 0.0250 (4)
C12 0.6319 (5) 0.0922 (3) −0.0371 (2) 0.0428 (6)
H12A 0.6747 0.0749 −0.1195 0.064*
H12B 0.4866 0.1315 −0.0340 0.064*
H12C 0.6041 −0.0078 −0.0117 0.064*
C13 1.0775 (3) 0.0158 (2) 0.27726 (16) 0.0214 (4)
C14 1.2625 (4) −0.0679 (3) 0.2328 (3) 0.0385 (5)
H14A 1.1877 −0.1802 0.1990 0.058*
H14B 1.3833 −0.0573 0.2997 0.058*
H14C 1.3381 −0.0212 0.1706 0.058*
C15 1.3937 (3) 0.3914 (2) 0.62530 (15) 0.0185 (4)
C16 1.5446 (4) 0.2974 (3) 0.64956 (18) 0.0230 (4)
H16 1.5095 0.1883 0.6104 0.028*
C17 1.7455 (4) 0.3644 (3) 0.73110 (18) 0.0249 (4)
H17 1.8490 0.3008 0.7482 0.030*
C18 1.7984 (3) 0.5252 (2) 0.78886 (16) 0.0229 (4)
C19 1.6452 (3) 0.6178 (2) 0.76354 (15) 0.0216 (4)
H19 1.6803 0.7268 0.8028 0.026*
C20 1.4427 (3) 0.5528 (2) 0.68196 (16) 0.0209 (4)
H20 1.3390 0.6162 0.6647 0.025*
C21 2.0148 (4) 0.5937 (3) 0.87497 (18) 0.0279 (4)
H21 2.1099 0.5244 0.8905 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0207 (6) 0.0178 (6) 0.0153 (5) 0.0077 (5) 0.0026 (4) 0.0040 (5)
O2 0.0222 (6) 0.0195 (7) 0.0197 (6) 0.0055 (5) −0.0015 (5) −0.0030 (5)
O3 0.0332 (8) 0.0268 (8) 0.0305 (7) 0.0149 (6) 0.0023 (6) −0.0032 (6)
O4 0.0163 (6) 0.0200 (6) 0.0160 (5) 0.0071 (4) 0.0020 (4) 0.0061 (4)
O5 0.0175 (6) 0.0221 (7) 0.0231 (6) 0.0063 (5) 0.0035 (5) 0.0043 (5)
O6 0.0202 (6) 0.0176 (6) 0.0160 (6) 0.0022 (5) −0.0017 (5) −0.0006 (5)
O7 0.0419 (9) 0.0422 (9) 0.0211 (7) −0.0038 (7) 0.0091 (6) −0.0018 (6)
O8 0.0178 (6) 0.0166 (6) 0.0245 (6) 0.0057 (5) 0.0023 (5) 0.0034 (5)
O9 0.0278 (7) 0.0171 (7) 0.0435 (8) 0.0040 (5) 0.0079 (6) 0.0062 (6)
O10 0.0231 (6) 0.0186 (7) 0.0203 (6) 0.0041 (5) −0.0020 (5) 0.0083 (5)
O11 0.0293 (7) 0.0380 (9) 0.0279 (7) 0.0037 (6) −0.0054 (6) 0.0066 (6)
C1 0.0191 (8) 0.0156 (9) 0.0157 (8) 0.0049 (6) 0.0017 (6) 0.0041 (6)
C2 0.0167 (7) 0.0166 (9) 0.0148 (7) 0.0051 (6) 0.0034 (6) 0.0054 (6)
C3 0.0162 (8) 0.0156 (8) 0.0150 (7) 0.0027 (6) −0.0006 (6) 0.0013 (6)
C4 0.0170 (8) 0.0148 (8) 0.0189 (8) 0.0043 (6) 0.0022 (6) 0.0022 (6)
C5 0.0183 (8) 0.0166 (9) 0.0164 (7) 0.0052 (6) 0.0010 (6) 0.0048 (6)
C6 0.0189 (8) 0.0167 (8) 0.0182 (8) 0.0039 (6) 0.0004 (6) 0.0000 (6)
C7 0.0286 (10) 0.0169 (9) 0.0206 (9) 0.0073 (7) 0.0045 (7) 0.0024 (7)
C8 0.0365 (11) 0.0227 (10) 0.0228 (9) 0.0043 (8) −0.0018 (8) −0.0014 (7)
C9 0.0154 (8) 0.0147 (8) 0.0176 (8) 0.0043 (6) −0.0011 (6) 0.0012 (6)
C10 0.0244 (9) 0.0298 (10) 0.0189 (8) 0.0116 (7) 0.0008 (6) 0.0075 (7)
C11 0.0334 (10) 0.0234 (10) 0.0172 (8) 0.0073 (8) 0.0028 (7) 0.0017 (7)
C12 0.0504 (14) 0.0434 (14) 0.0206 (10) −0.0062 (11) −0.0034 (9) −0.0024 (9)
C13 0.0243 (9) 0.0171 (9) 0.0224 (8) 0.0046 (7) −0.0001 (7) 0.0048 (7)
C14 0.0350 (11) 0.0218 (11) 0.0614 (16) 0.0118 (9) 0.0152 (10) 0.0073 (10)
C15 0.0191 (8) 0.0225 (10) 0.0161 (8) 0.0054 (7) 0.0032 (6) 0.0084 (6)
C16 0.0263 (9) 0.0229 (9) 0.0238 (8) 0.0090 (7) 0.0049 (7) 0.0102 (7)
C17 0.0243 (9) 0.0309 (11) 0.0258 (9) 0.0124 (8) 0.0043 (7) 0.0139 (8)
C18 0.0228 (9) 0.0310 (11) 0.0175 (8) 0.0068 (7) 0.0035 (7) 0.0101 (7)
C19 0.0254 (9) 0.0233 (10) 0.0160 (8) 0.0065 (7) 0.0019 (7) 0.0041 (7)
C20 0.0240 (9) 0.0229 (10) 0.0180 (8) 0.0085 (7) 0.0014 (7) 0.0070 (7)
C21 0.0223 (9) 0.0400 (13) 0.0235 (9) 0.0075 (8) 0.0010 (7) 0.0120 (9)

Geometric parameters (Å, °)

O1—C5 1.413 (2) C7—C8 1.499 (3)
O1—C1 1.439 (2) C8—H8A 0.9800
O2—C7 1.340 (2) C8—H8B 0.9800
O2—C6 1.443 (2) C8—H8C 0.9800
O3—C7 1.210 (3) C9—C10 1.492 (2)
O4—C9 1.361 (2) C10—H10A 0.9800
O4—C2 1.443 (2) C10—H10B 0.9800
O5—C9 1.199 (2) C10—H10C 0.9800
O6—C11 1.360 (2) C11—C12 1.497 (3)
O6—C3 1.4389 (19) C12—H12A 0.9800
O7—C11 1.197 (3) C12—H12B 0.9800
O8—C13 1.356 (2) C12—H12C 0.9800
O8—C4 1.431 (2) C13—C14 1.489 (3)
O9—C13 1.199 (3) C14—H14A 0.9800
O10—C15 1.381 (2) C14—H14B 0.9800
O10—C5 1.404 (2) C14—H14C 0.9800
O11—C21 1.212 (3) C15—C16 1.391 (3)
C1—C6 1.513 (2) C15—C20 1.403 (3)
C1—C2 1.534 (2) C16—C17 1.380 (3)
C1—H1 1.0000 C16—H16 0.9500
C2—C3 1.521 (2) C17—C18 1.400 (3)
C2—H2 1.0000 C17—H17 0.9500
C3—C4 1.520 (2) C18—C19 1.396 (3)
C3—H3 1.0000 C18—C21 1.472 (3)
C4—C5 1.527 (2) C19—C20 1.384 (3)
C4—H4 1.0000 C19—H19 0.9500
C5—H5 1.0000 C20—H20 0.9500
C6—H6A 0.9900 C21—H21 0.9500
C6—H6B 0.9900
C5—O1—C1 111.07 (12) H8B—C8—H8C 109.5
C7—O2—C6 116.65 (14) O5—C9—O4 122.82 (15)
C9—O4—C2 117.18 (13) O5—C9—C10 127.05 (16)
C11—O6—C3 117.74 (14) O4—C9—C10 110.10 (14)
C13—O8—C4 117.05 (14) C9—C10—H10A 109.5
C15—O10—C5 115.77 (13) C9—C10—H10B 109.5
O1—C1—C6 106.88 (13) H10A—C10—H10B 109.5
O1—C1—C2 107.27 (13) C9—C10—H10C 109.5
C6—C1—C2 113.52 (14) H10A—C10—H10C 109.5
O1—C1—H1 109.7 H10B—C10—H10C 109.5
C6—C1—H1 109.7 O7—C11—O6 124.08 (17)
C2—C1—H1 109.7 O7—C11—C12 126.49 (19)
O4—C2—C3 104.57 (13) O6—C11—C12 109.41 (17)
O4—C2—C1 111.42 (13) C11—C12—H12A 109.5
C3—C2—C1 110.19 (13) C11—C12—H12B 109.5
O4—C2—H2 110.2 H12A—C12—H12B 109.5
C3—C2—H2 110.2 C11—C12—H12C 109.5
C1—C2—H2 110.2 H12A—C12—H12C 109.5
O6—C3—C2 107.91 (13) H12B—C12—H12C 109.5
O6—C3—C4 108.09 (14) O9—C13—O8 123.37 (18)
C2—C3—C4 111.16 (13) O9—C13—C14 125.80 (19)
O6—C3—H3 109.9 O8—C13—C14 110.81 (17)
C2—C3—H3 109.9 C13—C14—H14A 109.5
C4—C3—H3 109.9 C13—C14—H14B 109.5
O8—C4—C3 108.55 (14) H14A—C14—H14B 109.5
O8—C4—C5 107.52 (13) C13—C14—H14C 109.5
C3—C4—C5 109.22 (14) H14A—C14—H14C 109.5
O8—C4—H4 110.5 H14B—C14—H14C 109.5
C3—C4—H4 110.5 O10—C15—C16 116.66 (17)
C5—C4—H4 110.5 O10—C15—C20 122.13 (16)
O10—C5—O1 109.38 (13) C16—C15—C20 121.21 (17)
O10—C5—C4 106.87 (14) C17—C16—C15 119.31 (19)
O1—C5—C4 108.50 (13) C17—C16—H16 120.3
O10—C5—H5 110.7 C15—C16—H16 120.3
O1—C5—H5 110.7 C16—C17—C18 120.59 (17)
C4—C5—H5 110.7 C16—C17—H17 119.7
O2—C6—C1 105.19 (14) C18—C17—H17 119.7
O2—C6—H6A 110.7 C19—C18—C17 119.37 (17)
C1—C6—H6A 110.7 C19—C18—C21 121.21 (18)
O2—C6—H6B 110.7 C17—C18—C21 119.42 (18)
C1—C6—H6B 110.7 C20—C19—C18 120.91 (18)
H6A—C6—H6B 108.8 C20—C19—H19 119.5
O3—C7—O2 123.64 (17) C18—C19—H19 119.5
O3—C7—C8 125.73 (18) C19—C20—C15 118.61 (17)
O2—C7—C8 110.58 (16) C19—C20—H20 120.7
C7—C8—H8A 109.5 C15—C20—H20 120.7
C7—C8—H8B 109.5 O11—C21—C18 124.9 (2)
H8A—C8—H8B 109.5 O11—C21—H21 117.5
C7—C8—H8C 109.5 C18—C21—H21 117.5
H8A—C8—H8C 109.5
C5—O1—C1—C6 −170.55 (13) C3—C4—C5—O1 58.77 (17)
C5—O1—C1—C2 67.38 (15) C7—O2—C6—C1 −174.96 (14)
C9—O4—C2—C3 140.73 (14) O1—C1—C6—O2 64.96 (16)
C9—O4—C2—C1 −100.26 (16) C2—C1—C6—O2 −176.99 (13)
O1—C1—C2—O4 −173.01 (13) C6—O2—C7—O3 −2.8 (3)
C6—C1—C2—O4 69.16 (17) C6—O2—C7—C8 174.88 (15)
O1—C1—C2—C3 −57.40 (16) C2—O4—C9—O5 9.6 (2)
C6—C1—C2—C3 −175.23 (13) C2—O4—C9—C10 −168.33 (15)
C11—O6—C3—C2 117.13 (16) C3—O6—C11—O7 2.1 (3)
C11—O6—C3—C4 −122.56 (16) C3—O6—C11—C12 −176.77 (19)
O4—C2—C3—O6 −69.99 (15) C4—O8—C13—O9 2.9 (3)
C1—C2—C3—O6 170.17 (13) C4—O8—C13—C14 −178.48 (17)
O4—C2—C3—C4 171.65 (13) C5—O10—C15—C16 −134.15 (17)
C1—C2—C3—C4 51.81 (18) C5—O10—C15—C20 46.8 (2)
C13—O8—C4—C3 −110.11 (16) O10—C15—C16—C17 −178.90 (15)
C13—O8—C4—C5 131.85 (15) C20—C15—C16—C17 0.2 (3)
O6—C3—C4—O8 73.14 (16) C15—C16—C17—C18 −0.2 (3)
C2—C3—C4—O8 −168.61 (13) C16—C17—C18—C19 0.2 (3)
O6—C3—C4—C5 −169.91 (13) C16—C17—C18—C21 −179.67 (17)
C2—C3—C4—C5 −51.66 (18) C17—C18—C19—C20 −0.2 (3)
C15—O10—C5—O1 −89.74 (17) C21—C18—C19—C20 179.63 (17)
C15—O10—C5—C4 152.99 (14) C18—C19—C20—C15 0.2 (3)
C1—O1—C5—O10 175.14 (12) O10—C15—C20—C19 178.82 (15)
C1—O1—C5—C4 −68.62 (16) C16—C15—C20—C19 −0.2 (3)
O8—C4—C5—O10 −65.78 (16) C19—C18—C21—O11 −1.9 (3)
C3—C4—C5—O10 176.62 (13) C17—C18—C21—O11 177.97 (19)
O8—C4—C5—O1 176.37 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O5i 1.00 2.51 3.356 (2) 143
C3—H3···O5i 1.00 2.35 3.207 (2) 143
C6—H6A···O9ii 0.99 2.40 3.324 (2) 155
C8—H8C···O11iii 0.98 2.54 3.475 (3) 160

Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2235).

References

  1. Agilent Technologies (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Bao, C., Lu, R., Jin, M., Xue, P., Tan, C., Zhao, Y. & Liu, G. (2004). Carbohydr. Res. 339, 1311–1316. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Hongu, M., Saito, K. & Tsujihara, K. (1999). Synth. Commun. 29, 2775–2781.
  8. Hussen, R. S. D., Heidelberg, T., Rodzi, N. Z. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst E67, o826. [DOI] [PMC free article] [PubMed]
  9. La Torre, G. L., Lagana, G., Bellocco, E., Vilasi, F., Salvo, F. & Dugo, G. (2004). Food Chem. 85, 259–266.
  10. Patil, P. R. & Ravindranathan Kartha, K. P. (2008). J. Carbohydr. Chem. 27, 411–419.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wen, H., Lin, C., Ling, Q., Ge, H., Ma, L., Cao, R., Wan, Y., Peng, W., Wang, Z. & Song, H. (2008). Eur. J. Med. Chem. 43, 166–173. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Yan, Q., Cao, R., Yi, W., Yu, L., Chen, Z., Ma, L. & Song, H. (2009). Bioorg. Med. Chem. Lett. 19, 4055–4058. [DOI] [PubMed]
  15. Ye, D., Zhang, K., Chen, H., Yin, S. & Li, Y. (2009). Acta Cryst. E65, o1338. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008099/ez2235sup1.cif

e-67-0o825-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008099/ez2235Isup2.hkl

e-67-0o825-Isup2.hkl (200.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES