Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):o1005–o1006. doi: 10.1107/S1600536811010786

3-(p-Tol­yl)-4-{3-[(phenyl­amino)­meth­yl]-7H-[1,2,4]triazolo[3,4-b][1,3,4]thia­diazin-6-yl}sydnone

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3099773  PMID: 21754026

Abstract

In the title compound, C20H17N7O2S (systematic name: 3-(4-methyl­phen­yl)-4-{3-[(phenyl­amino)­meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-1,2,3-oxadiazol-3-ium-5-olate), the 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The oxadiazol-3-ium ring makes dihedral angles of 57.99 (6) and 54.48 (6)° with the phenyl and benzene rings, respectively, while the 1,2,4-triazole ring forms corresponding angles of 37.35 (6) and 73.89 (6)°. The dihedral angle between the oxadiazol-3-ium and 1,2,4-triazole rings is 21.12 (6)°. In the crystal, the mol­ecules are linked via inter­molecular N—H⋯O and C—H⋯N hydrogen bonds into a layer parallel to the (100) plane. The crystal structure is further consolidated by C—H⋯π inter­actions. An intra­molecular C—H⋯O hydrogen bond is also observed, which generates an S(6) ring motif.

Related literature

For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008); Kalluraya et al. (2002); Hedge et al. (2008). For general background to and the biological activity of triazolothia­diazine derivatives, see: Kalluraya & Rahiman (1997). For the synthesis of triazolothia­diazines, see: Kalluraya et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-67-o1005-scheme1.jpg

Experimental

Crystal data

  • C20H17N7O2S

  • M r = 419.47

  • Monoclinic, Inline graphic

  • a = 10.1210 (4) Å

  • b = 10.5065 (4) Å

  • c = 19.6370 (6) Å

  • β = 114.550 (2)°

  • V = 1899.36 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.35 × 0.28 × 0.27 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.932, T max = 0.947

  • 22363 measured reflections

  • 6845 independent reflections

  • 5754 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.109

  • S = 1.06

  • 6845 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010786/is2692sup1.cif

e-67-o1005-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010786/is2692Isup2.hkl

e-67-o1005-Isup2.hkl (335KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2 0.97 2.40 3.1654 (14) 136
N1—H1⋯O2i 0.86 2.20 3.0218 (11) 160
C18—H18A⋯N2ii 0.93 2.62 3.4246 (14) 145
C15—H15ACg1iii 0.93 2.73 3.5537 (14) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Sydnones are mesoionic heterocyclic aromatic compounds. The study of sydnones remains as a field of interest because of their electronic structures and varied types of biological activities displayed by some of them (Rai et al., 2008). Recently, sydnone derivatives were found to exhibit promising antimicrobial properties (Kalluraya et al., 2002). Triazolothiadiazines possess significant biological and pharmacological activities such as anthelmintic, analgesic and anti-inflammatory (Kalluraya & Rahiman, 1997) properties. Encouraged by these literatures, we have synthesized triazolothiadiazines containing the sydnone moiety. The introduction of sydnone moiety into an heterocyclic compound will increase the biological and pharmacological activities of heterocyclic system (Hedge et al., 2008). Triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl- 4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges. The molecular structure is stabilized by an intramolecular C10–H10A···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The 3,6-dihydro-2H-1,3,4-thiadiazine ring (S1/N5/N6/C9–C11) adopts a half-boat conformation with atom C10 deviating by 0.340 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.5312 (9) Å, Θ = 66.79 (11)° and φ = 325.26 (12)°. The dihedral angles between oxadiazol-3-ium ring (O1/N6/N7/C12/C13) and the two phenyl rings (C1–C6 and C14–C19) are 57.99 (6) and 54.48 (6)°, respectively. The correspondence angles for 1,2,4-triazole ring (N2–N4/C8/C9) are 37.35 (6) and 73.89 (6)°.

In the solid state (Fig. 2), the molecules are linked via intermolecular N1—H1···O2 and C18—H18A···N2 (Table 1) hydrogen bonds into infinite two-dimensional planes parallel to (100). The crystal structure is further consolidated by C15—H15A···Cg1 interactions (Table 1), where Cg1 is the centroid of C1–C6 phenyl ring.

Experimental

To a solution of 4-bromoacetyl-3-(p-tolyl)sydnone (0.01 mol) and 4-amino-5-[(phenylamino)methyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

H1 was located in a difference Fourier map and refined using a riding model with Uiso(H) = 1.2 Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.68 Å from C18 and the deepest hole is located at 1.01 Å from N4.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. The intramoleculer hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C20H17N7O2S F(000) = 872
Mr = 419.47 Dx = 1.467 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8225 reflections
a = 10.1210 (4) Å θ = 2.8–32.5°
b = 10.5065 (4) Å µ = 0.21 mm1
c = 19.6370 (6) Å T = 100 K
β = 114.550 (2)° Block, orange
V = 1899.36 (12) Å3 0.35 × 0.28 × 0.27 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 6845 independent reflections
Radiation source: fine-focus sealed tube 5754 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.932, Tmax = 0.947 k = −15→15
22363 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.4436P] where P = (Fo2 + 2Fc2)/3
6845 reflections (Δ/σ)max = 0.002
272 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.76994 (3) 0.59534 (2) 1.086823 (13) 0.01634 (7)
O1 0.29144 (9) 0.96219 (7) 1.00427 (4) 0.01957 (15)
O2 0.51181 (10) 0.92364 (7) 1.10036 (4) 0.02034 (16)
N1 0.39442 (11) 0.30819 (8) 0.79980 (5) 0.01940 (18)
H1 0.4424 0.2500 0.8313 0.023*
N2 0.66867 (10) 0.35357 (8) 0.92354 (5) 0.01599 (16)
N3 0.76192 (10) 0.39417 (8) 0.99600 (5) 0.01605 (16)
N4 0.59144 (9) 0.53924 (8) 0.94311 (4) 0.01301 (15)
N5 0.49010 (9) 0.63271 (8) 0.93523 (4) 0.01330 (15)
N6 0.29928 (10) 0.84348 (8) 0.91836 (4) 0.01433 (15)
N7 0.21520 (11) 0.92571 (9) 0.93095 (5) 0.01882 (17)
C1 0.24653 (12) 0.35564 (10) 0.66818 (6) 0.01858 (19)
H1A 0.2696 0.4417 0.6759 0.022*
C2 0.15334 (12) 0.31226 (11) 0.59701 (6) 0.0203 (2)
H2A 0.1146 0.3701 0.5578 0.024*
C3 0.11761 (12) 0.18408 (11) 0.58390 (6) 0.0203 (2)
H3A 0.0557 0.1559 0.5364 0.024*
C4 0.17654 (12) 0.09824 (10) 0.64352 (6) 0.01943 (19)
H4A 0.1535 0.0123 0.6355 0.023*
C5 0.26881 (12) 0.13991 (10) 0.71441 (6) 0.01743 (18)
H5A 0.3070 0.0817 0.7534 0.021*
C6 0.30514 (11) 0.26966 (9) 0.72776 (5) 0.01523 (17)
C7 0.44975 (12) 0.43689 (9) 0.81634 (5) 0.01550 (17)
H7A 0.3723 0.4945 0.8128 0.019*
H7B 0.4872 0.4638 0.7805 0.019*
C8 0.56801 (11) 0.44026 (9) 0.89361 (5) 0.01385 (17)
C9 0.71259 (11) 0.50470 (9) 1.00598 (5) 0.01399 (16)
C10 0.68936 (11) 0.74328 (9) 1.03967 (6) 0.01621 (18)
H10A 0.6906 0.8051 1.0766 0.019*
H10B 0.7477 0.7769 1.0152 0.019*
C11 0.53525 (11) 0.72606 (9) 0.98234 (5) 0.01326 (16)
C12 0.42909 (11) 0.82264 (9) 0.97734 (5) 0.01385 (17)
C13 0.42779 (12) 0.90140 (9) 1.03598 (5) 0.01612 (18)
C14 0.24541 (11) 0.79366 (9) 0.84281 (5) 0.01405 (17)
C15 0.10991 (12) 0.73640 (11) 0.81278 (6) 0.0201 (2)
H15A 0.0557 0.7275 0.8409 0.024*
C16 0.05717 (12) 0.69250 (12) 0.73922 (6) 0.0215 (2)
H16A −0.0334 0.6534 0.7180 0.026*
C17 0.13799 (12) 0.70619 (10) 0.69677 (5) 0.01611 (18)
C18 0.27547 (12) 0.76301 (10) 0.72997 (5) 0.01676 (18)
H18A 0.3308 0.7710 0.7024 0.020*
C19 0.33082 (12) 0.80769 (10) 0.80326 (5) 0.01638 (18)
H19A 0.4219 0.8457 0.8251 0.020*
C20 0.07796 (13) 0.66428 (11) 0.61610 (6) 0.0207 (2)
H20A 0.0210 0.5886 0.6099 0.031*
H20B 0.1567 0.6470 0.6022 0.031*
H20C 0.0180 0.7305 0.5848 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01723 (12) 0.01541 (11) 0.01298 (10) −0.00007 (8) 0.00287 (9) −0.00047 (7)
O1 0.0246 (4) 0.0170 (3) 0.0176 (3) 0.0046 (3) 0.0092 (3) −0.0020 (3)
O2 0.0298 (4) 0.0152 (3) 0.0137 (3) 0.0000 (3) 0.0068 (3) −0.0018 (2)
N1 0.0258 (5) 0.0125 (3) 0.0133 (3) −0.0004 (3) 0.0017 (3) −0.0003 (3)
N2 0.0175 (4) 0.0158 (4) 0.0149 (3) 0.0018 (3) 0.0069 (3) −0.0007 (3)
N3 0.0152 (4) 0.0168 (4) 0.0154 (3) 0.0015 (3) 0.0056 (3) −0.0002 (3)
N4 0.0135 (4) 0.0120 (3) 0.0127 (3) 0.0014 (3) 0.0046 (3) −0.0004 (3)
N5 0.0151 (4) 0.0114 (3) 0.0135 (3) 0.0021 (3) 0.0061 (3) 0.0004 (3)
N6 0.0169 (4) 0.0128 (3) 0.0136 (3) 0.0011 (3) 0.0066 (3) 0.0006 (3)
N7 0.0214 (4) 0.0178 (4) 0.0173 (4) 0.0049 (3) 0.0081 (3) −0.0010 (3)
C1 0.0210 (5) 0.0182 (4) 0.0146 (4) 0.0002 (4) 0.0055 (4) 0.0007 (3)
C2 0.0192 (5) 0.0264 (5) 0.0143 (4) 0.0004 (4) 0.0058 (4) 0.0013 (4)
C3 0.0178 (5) 0.0278 (5) 0.0152 (4) −0.0025 (4) 0.0067 (4) −0.0050 (4)
C4 0.0186 (5) 0.0200 (4) 0.0203 (4) −0.0017 (4) 0.0087 (4) −0.0059 (3)
C5 0.0186 (5) 0.0156 (4) 0.0175 (4) 0.0009 (4) 0.0069 (4) −0.0016 (3)
C6 0.0164 (4) 0.0157 (4) 0.0136 (4) 0.0008 (3) 0.0062 (3) −0.0016 (3)
C7 0.0191 (5) 0.0137 (4) 0.0126 (4) 0.0004 (3) 0.0055 (3) −0.0002 (3)
C8 0.0166 (4) 0.0128 (4) 0.0134 (4) −0.0003 (3) 0.0074 (3) −0.0010 (3)
C9 0.0123 (4) 0.0153 (4) 0.0136 (4) 0.0001 (3) 0.0046 (3) 0.0007 (3)
C10 0.0157 (4) 0.0137 (4) 0.0168 (4) −0.0010 (3) 0.0043 (3) −0.0010 (3)
C11 0.0157 (4) 0.0122 (4) 0.0124 (3) 0.0000 (3) 0.0064 (3) 0.0008 (3)
C12 0.0167 (4) 0.0118 (4) 0.0126 (3) 0.0008 (3) 0.0056 (3) 0.0001 (3)
C13 0.0225 (5) 0.0114 (4) 0.0153 (4) 0.0014 (3) 0.0087 (4) 0.0010 (3)
C14 0.0157 (4) 0.0140 (4) 0.0120 (3) 0.0011 (3) 0.0053 (3) 0.0008 (3)
C15 0.0167 (5) 0.0283 (5) 0.0175 (4) −0.0025 (4) 0.0091 (4) −0.0018 (4)
C16 0.0155 (5) 0.0306 (5) 0.0176 (4) −0.0047 (4) 0.0061 (4) −0.0026 (4)
C17 0.0161 (4) 0.0175 (4) 0.0132 (4) 0.0011 (3) 0.0046 (3) 0.0015 (3)
C18 0.0184 (5) 0.0190 (4) 0.0139 (4) −0.0026 (4) 0.0078 (3) 0.0013 (3)
C19 0.0170 (4) 0.0177 (4) 0.0144 (4) −0.0033 (3) 0.0066 (3) 0.0008 (3)
C20 0.0203 (5) 0.0254 (5) 0.0134 (4) −0.0004 (4) 0.0040 (4) −0.0004 (3)

Geometric parameters (Å, °)

S1—C9 1.7315 (10) C4—H4A 0.9300
S1—C10 1.8196 (10) C5—C6 1.4079 (14)
O1—N7 1.3756 (12) C5—H5A 0.9300
O1—C13 1.4093 (13) C7—C8 1.4924 (14)
O2—C13 1.2177 (12) C7—H7A 0.9700
N1—C6 1.3855 (12) C7—H7B 0.9700
N1—C7 1.4479 (13) C10—C11 1.5079 (14)
N1—H1 0.8621 C10—H10A 0.9700
N2—C8 1.3097 (13) C10—H10B 0.9700
N2—N3 1.4075 (12) C11—C12 1.4511 (14)
N3—C9 1.3106 (13) C12—C13 1.4226 (13)
N4—C8 1.3751 (12) C14—C15 1.3851 (15)
N4—C9 1.3790 (12) C14—C19 1.3893 (14)
N4—N5 1.3814 (11) C15—C16 1.3941 (15)
N5—C11 1.2943 (12) C15—H15A 0.9300
N6—N7 1.3063 (12) C16—C17 1.3968 (15)
N6—C12 1.3605 (13) C16—H16A 0.9300
N6—C14 1.4491 (12) C17—C18 1.4013 (15)
C1—C2 1.3983 (14) C17—C20 1.5075 (14)
C1—C6 1.3999 (14) C18—C19 1.3914 (13)
C1—H1A 0.9300 C18—H18A 0.9300
C2—C3 1.3904 (16) C19—H19A 0.9300
C2—H2A 0.9300 C20—H20A 0.9600
C3—C4 1.3998 (16) C20—H20B 0.9600
C3—H3A 0.9300 C20—H20C 0.9600
C4—C5 1.3861 (14)
C9—S1—C10 95.43 (5) N3—C9—N4 110.58 (8)
N7—O1—C13 110.89 (8) N3—C9—S1 128.39 (8)
C6—N1—C7 121.96 (8) N4—C9—S1 120.71 (7)
C6—N1—H1 117.3 C11—C10—S1 112.54 (7)
C7—N1—H1 116.9 C11—C10—H10A 109.1
C8—N2—N3 108.22 (8) S1—C10—H10A 109.1
C9—N3—N2 106.42 (8) C11—C10—H10B 109.1
C8—N4—C9 105.18 (8) S1—C10—H10B 109.1
C8—N4—N5 123.82 (8) H10A—C10—H10B 107.8
C9—N4—N5 129.05 (8) N5—C11—C12 116.74 (9)
C11—N5—N4 115.69 (8) N5—C11—C10 124.96 (9)
N7—N6—C12 114.83 (8) C12—C11—C10 118.28 (8)
N7—N6—C14 115.79 (8) N6—C12—C13 105.37 (9)
C12—N6—C14 129.26 (8) N6—C12—C11 126.59 (8)
N6—N7—O1 104.84 (8) C13—C12—C11 127.41 (9)
C2—C1—C6 120.04 (10) O2—C13—O1 120.33 (9)
C2—C1—H1A 120.0 O2—C13—C12 135.62 (10)
C6—C1—H1A 120.0 O1—C13—C12 104.05 (8)
C3—C2—C1 121.08 (10) C15—C14—C19 122.95 (9)
C3—C2—H2A 119.5 C15—C14—N6 118.54 (9)
C1—C2—H2A 119.5 C19—C14—N6 118.50 (9)
C2—C3—C4 118.79 (10) C14—C15—C16 118.04 (10)
C2—C3—H3A 120.6 C14—C15—H15A 121.0
C4—C3—H3A 120.6 C16—C15—H15A 121.0
C5—C4—C3 120.77 (10) C15—C16—C17 121.14 (10)
C5—C4—H4A 119.6 C15—C16—H16A 119.4
C3—C4—H4A 119.6 C17—C16—H16A 119.4
C4—C5—C6 120.51 (9) C16—C17—C18 118.74 (9)
C4—C5—H5A 119.7 C16—C17—C20 121.11 (10)
C6—C5—H5A 119.7 C18—C17—C20 120.13 (9)
N1—C6—C1 122.34 (9) C19—C18—C17 121.34 (9)
N1—C6—C5 118.82 (9) C19—C18—H18A 119.3
C1—C6—C5 118.81 (9) C17—C18—H18A 119.3
N1—C7—C8 108.80 (8) C14—C19—C18 117.77 (10)
N1—C7—H7A 109.9 C14—C19—H19A 121.1
C8—C7—H7A 109.9 C18—C19—H19A 121.1
N1—C7—H7B 109.9 C17—C20—H20A 109.5
C8—C7—H7B 109.9 C17—C20—H20B 109.5
H7A—C7—H7B 108.3 H20A—C20—H20B 109.5
N2—C8—N4 109.59 (8) C17—C20—H20C 109.5
N2—C8—C7 125.84 (9) H20A—C20—H20C 109.5
N4—C8—C7 124.51 (9) H20B—C20—H20C 109.5
C8—N2—N3—C9 −0.32 (11) C9—S1—C10—C11 46.28 (8)
C8—N4—N5—C11 −172.93 (9) N4—N5—C11—C12 −177.38 (8)
C9—N4—N5—C11 25.42 (14) N4—N5—C11—C10 4.59 (14)
C12—N6—N7—O1 −1.21 (12) S1—C10—C11—N5 −43.10 (12)
C14—N6—N7—O1 −177.58 (8) S1—C10—C11—C12 138.89 (8)
C13—O1—N7—N6 1.44 (11) N7—N6—C12—C13 0.52 (12)
C6—C1—C2—C3 −0.22 (17) C14—N6—C12—C13 176.30 (9)
C1—C2—C3—C4 0.11 (17) N7—N6—C12—C11 171.94 (9)
C2—C3—C4—C5 0.03 (17) C14—N6—C12—C11 −12.28 (16)
C3—C4—C5—C6 −0.06 (17) N5—C11—C12—N6 −17.48 (15)
C7—N1—C6—C1 −8.93 (16) C10—C11—C12—N6 160.69 (9)
C7—N1—C6—C5 172.89 (10) N5—C11—C12—C13 152.08 (10)
C2—C1—C6—N1 −177.99 (11) C10—C11—C12—C13 −29.75 (15)
C2—C1—C6—C5 0.19 (16) N7—O1—C13—O2 178.77 (9)
C4—C5—C6—N1 178.20 (10) N7—O1—C13—C12 −1.14 (11)
C4—C5—C6—C1 −0.05 (16) N6—C12—C13—O2 −179.49 (12)
C6—N1—C7—C8 −166.77 (10) C11—C12—C13—O2 9.2 (2)
N3—N2—C8—N4 0.91 (11) N6—C12—C13—O1 0.39 (10)
N3—N2—C8—C7 178.01 (9) C11—C12—C13—O1 −170.93 (9)
C9—N4—C8—N2 −1.12 (11) N7—N6—C14—C15 −55.54 (13)
N5—N4—C8—N2 −166.45 (9) C12—N6—C14—C15 128.71 (11)
C9—N4—C8—C7 −178.27 (9) N7—N6—C14—C19 123.23 (10)
N5—N4—C8—C7 16.41 (15) C12—N6—C14—C19 −52.52 (14)
N1—C7—C8—N2 40.77 (14) C19—C14—C15—C16 −0.75 (16)
N1—C7—C8—N4 −142.55 (10) N6—C14—C15—C16 177.97 (10)
N2—N3—C9—N4 −0.40 (11) C14—C15—C16—C17 −0.28 (17)
N2—N3—C9—S1 173.15 (8) C15—C16—C17—C18 1.25 (17)
C8—N4—C9—N3 0.92 (11) C15—C16—C17—C20 −177.10 (11)
N5—N4—C9—N3 165.20 (9) C16—C17—C18—C19 −1.25 (16)
C8—N4—C9—S1 −173.20 (7) C20—C17—C18—C19 177.12 (10)
N5—N4—C9—S1 −8.92 (14) C15—C14—C19—C18 0.75 (15)
C10—S1—C9—N3 161.54 (10) N6—C14—C19—C18 −177.96 (9)
C10—S1—C9—N4 −25.49 (9) C17—C18—C19—C14 0.28 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···A D—H H···A D···A D—H···A
C10—H10A···O2 0.97 2.40 3.1654 (14) 136
N1—H1···O2i 0.86 2.20 3.0218 (11) 160
C18—H18A···N2ii 0.93 2.62 3.4246 (14) 145
C15—H15A···Cg1iii 0.93 2.73 3.5537 (14) 148

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2692).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  7. Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.
  8. Kalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect B, 41, 1712–1717.
  9. Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.
  10. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem 43, 1715–1720. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010786/is2692sup1.cif

e-67-o1005-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010786/is2692Isup2.hkl

e-67-o1005-Isup2.hkl (335KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES