Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):m413. doi: 10.1107/S1600536811008324

catena-Poly[bis­(propane-1,3-diaminium) [[aqua­(sulfato-κO)bis­(sulfato-κ2 O,O′)cerate(IV)]-μ-sulfato-κ3 O,O′:O′′] dihydrate]

Ali Farooq Meer a, Saeed Ahmad a, Shahzad Sharif b, Islam Ullah Khan b, Seik Weng Ng c,*
PMCID: PMC3099775  PMID: 21753945

Abstract

The CeIV atom in the title salt, {(H3NCH2CH2CH2NH3)2[Ce(SO4)4(H2O)]·2H2O}n, exists in a monocapped square-anti­prismatic coordination geometry. The water-coordinated metal atom is bonded to four sulfate ions; one of them is monodentate and two function in a chelating mode. The fourth is also chelating but it uses one of the other two O atoms to bind to an adjacent metal atom, generating a polyanionic chain. The cations are linked to the polyanionic chain as well as to the uncoordinated water mol­ecules, resulting in an O—H⋯O and N—H⋯O hydrogen-bonded three-dimensional network.

Related literature

For (C2H10N2)5[Ce2(SO4)9].3H2O, see: Jabeen et al. (2010).graphic file with name e-67-0m413-scheme1.jpg

Experimental

Crystal data

  • (C3H12N2)2[Ce(SO4)4(H2O)]·2H2O

  • M r = 730.70

  • Monoclinic, Inline graphic

  • a = 8.9459 (1) Å

  • b = 20.4497 (3) Å

  • c = 12.8688 (2) Å

  • β = 99.535 (1)°

  • V = 2321.71 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 295 K

  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.531, T max = 0.794

  • 21238 measured reflections

  • 5296 independent reflections

  • 4663 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.071

  • S = 1.14

  • 5296 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −1.41 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008324/bt5471sup1.cif

e-67-0m413-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008324/bt5471Isup2.hkl

e-67-0m413-Isup2.hkl (259.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w2⋯O12i 0.84 2.05 2.854 (4) 162
O2w—H2w1⋯O11i 0.84 2.24 2.935 (5) 140
O2w—H2w2⋯O15ii 0.84 2.08 2.902 (5) 167
O3w—H3w1⋯O3i 0.84 1.90 2.729 (5) 169
O3w—H3w2⋯O2w 0.85 1.98 2.802 (5) 163
N1—H11⋯O9i 0.86 2.04 2.881 (4) 167
N1—H12⋯O3w 0.86 1.95 2.806 (5) 171
N1—H13⋯O13iii 0.86 2.19 3.036 (4) 166
N2—H21⋯O16iv 0.86 2.09 2.904 (5) 157
N2—H22⋯O16ii 0.86 2.25 2.978 (5) 142
N2—H23⋯O2 0.86 2.49 3.180 (6) 137
N2—H23⋯O5 0.86 2.44 2.989 (4) 122
N3—H31⋯O6v 0.86 2.04 2.866 (4) 162
N3—H32⋯O4 0.86 2.37 2.882 (6) 119
N3—H32⋯O2wvi 0.86 2.37 3.085 (6) 141
N3—H33⋯O1 0.86 2.33 3.004 (5) 135
N3—H33⋯O10 0.86 2.43 3.191 (6) 147
N4—H41⋯O6vii 0.86 2.34 2.986 (4) 132
N4—H41⋯O15vii 0.86 2.25 2.951 (5) 138
N4—H43⋯O4viii 0.86 2.00 2.851 (5) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

We thank the Higher Education Commission of Pakistan, GC University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

A previous study reports the isolation of pentakis(ethylenediammonium) µ-sulfato-bis[trisulfatocerate(IV) trihydrate, which was synthesized by the reaction of 1,2-diaminoethane with cerium(IV) sulfate (Jabeen et al., 2010). The two independent Ce atoms exist in a nine-coordinate geometry this is best described as a tricapped trigonal prism. Shortening the cationic chain results in the formatoin of a polyanion. The compound obtained with 1,3-diaminopropane in place of 1,2-diamionoethane is 2(H3NCH2CH2CH2NH3) [Ce(H2O)(SO4)4].2H2O (Scheme I, Fig. 1). One of the sulfate ions behaving in a bridging mode to link adjacent cerate ions into a chain. The cations are linked to the polyanionic chain as well as to the lattice water molecules to result in a hydrogen-bonded three-dimensional network. The metal atom shows monocapped square-antiprismatic geometry (Fig. 2).

Experimental

1,3-Diaminopropane (0.148 g, 2 mmol) was placed in a 1 N sulfuric acid solution (5 ml) of cerium(IV) sulfate tetrahydrate (0.202 g, 0.5 mmol). The yellow solution was filtered and then set aside for the growth of crystals.

Refinement

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C–H 0.93 to 0.97 Å; N–H 0.86 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,N). The H-atoms of the water molecules were placed in chemically sensible positions on the basis of hydrogen bonding interactions (O–H 0.84 Å) and their temperature factors were similar tied. The final difference Fouier map had a peak at 0.85 Å from Ce1 and a hole at 1.18 Å from O10.

The (1 0 0), (1 1 0) and (0 2 0) reflections were omitted as they were affected by the beam stop. The reflections (-1 3 10), (-1 7 8), (0 7 6), (0 1 6), (-1 8 12) and (-1 2 12) were omitted because of bad disagreement between the calculated and observed intensities.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric (H3NCH2CH2CH2NH3) [Ce(H2O)(SO4)4].2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Monocapped square-antiprismatic geometry of Ce(IV).

Crystal data

(C3H12N2)2[Ce(SO4)4(H2O)]·2H2O F(000) = 1472
Mr = 730.70 Dx = 2.090 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9960 reflections
a = 8.9459 (1) Å θ = 2.8–28.3°
b = 20.4497 (3) Å µ = 2.41 mm1
c = 12.8688 (2) Å T = 295 K
β = 99.535 (1)° Prism, yellow
V = 2321.71 (6) Å3 0.30 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 5296 independent reflections
Radiation source: fine-focus sealed tube 4663 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.531, Tmax = 0.794 k = −26→20
21238 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0167P)2 + 7.615P] where P = (Fo2 + 2Fc2)/3
5296 reflections (Δ/σ)max = 0.001
307 parameters Δρmax = 1.24 e Å3
0 restraints Δρmin = −1.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ce1 0.682986 (19) 0.252538 (8) 0.326048 (13) 0.01407 (6)
S1 0.58776 (10) 0.08286 (4) 0.35192 (8) 0.02668 (19)
S2 0.57080 (9) 0.24695 (4) 0.08631 (6) 0.01880 (16)
S3 1.02446 (9) 0.22812 (4) 0.34548 (7) 0.02170 (17)
S4 0.66130 (10) 0.39960 (4) 0.35617 (7) 0.02449 (18)
O1 0.6789 (3) 0.14558 (12) 0.3672 (2) 0.0248 (5)
O2 0.4287 (3) 0.10079 (15) 0.3213 (4) 0.0588 (11)
O3 0.6376 (4) 0.04469 (15) 0.2697 (3) 0.0429 (7)
O4 0.6144 (4) 0.04863 (16) 0.4518 (3) 0.0530 (9)
O5 0.6001 (3) 0.19145 (12) 0.16128 (19) 0.0266 (5)
O6 0.6232 (3) 0.30497 (11) 0.15445 (18) 0.0227 (5)
O7 0.4153 (3) 0.25303 (17) 0.0394 (2) 0.0439 (8)
O8 0.6718 (3) 0.24052 (12) 0.00700 (19) 0.0246 (5)
O9 0.9026 (3) 0.23795 (12) 0.24892 (19) 0.0236 (5)
O10 0.9303 (3) 0.23354 (13) 0.4321 (2) 0.0253 (5)
O11 1.0895 (3) 0.16402 (14) 0.3425 (2) 0.0384 (7)
O12 1.1351 (3) 0.27980 (14) 0.3520 (2) 0.0323 (6)
O13 0.8002 (3) 0.35764 (12) 0.3595 (2) 0.0236 (5)
O14 0.5368 (3) 0.35021 (12) 0.3413 (2) 0.0231 (5)
O15 0.6465 (3) 0.44422 (15) 0.2677 (3) 0.0486 (8)
O16 0.6665 (3) 0.43396 (15) 0.4552 (3) 0.0436 (8)
O1w 0.4185 (3) 0.23056 (12) 0.3117 (2) 0.0245 (5)
H1w1 0.4039 0.1903 0.3164 0.037*
H1w2 0.3478 0.2512 0.3315 0.037*
O2w 0.1571 (4) 0.02367 (19) 0.3392 (3) 0.0621 (10)
H2w1 0.1834 0.0622 0.3559 0.093*
H2w2 0.2243 0.0057 0.3107 0.093*
O3w −0.1048 (4) 0.02558 (18) 0.1859 (3) 0.0572 (9)
H3w1 −0.1861 0.0260 0.2112 0.086*
H3w2 −0.0325 0.0329 0.2360 0.086*
N1 −0.0516 (4) 0.14453 (17) 0.0895 (3) 0.0332 (7)
H11 −0.0698 0.1765 0.1290 0.050*
H12 −0.0780 0.1084 0.1155 0.050*
H13 −0.1022 0.1498 0.0272 0.050*
N2 0.4215 (4) 0.07383 (16) 0.0772 (3) 0.0334 (7)
H21 0.5087 0.0757 0.0575 0.050*
H22 0.4077 0.0352 0.1003 0.050*
H23 0.4179 0.1019 0.1264 0.050*
N3 0.8546 (4) 0.1186 (2) 0.5827 (3) 0.0539 (11)
H31 0.7883 0.1354 0.6161 0.081*
H32 0.8346 0.0778 0.5713 0.081*
H33 0.8522 0.1384 0.5236 0.081*
N4 1.3989 (4) 0.08791 (18) 0.5938 (3) 0.0445 (9)
H41 1.4856 0.0974 0.6304 0.067*
H42 1.3901 0.1068 0.5334 0.067*
H43 1.3920 0.0463 0.5851 0.067*
C1 0.1122 (4) 0.14262 (19) 0.0843 (3) 0.0308 (8)
H1A 0.1699 0.1367 0.1544 0.037*
H1B 0.1430 0.1836 0.0563 0.037*
C2 0.1438 (4) 0.0867 (2) 0.0140 (3) 0.0322 (8)
H2A 0.1307 0.0457 0.0493 0.039*
H2B 0.0703 0.0879 −0.0505 0.039*
C3 0.3013 (4) 0.0886 (2) −0.0138 (3) 0.0348 (9)
H3A 0.3073 0.0572 −0.0694 0.042*
H3B 0.3193 0.1317 −0.0407 0.042*
C4 1.0041 (5) 0.1253 (2) 0.6454 (4) 0.0438 (11)
H4A 1.0057 0.1038 0.7128 0.053*
H4B 1.0260 0.1713 0.6587 0.053*
C5 1.1240 (5) 0.0961 (2) 0.5913 (4) 0.0379 (9)
H5A 1.1098 0.0491 0.5862 0.045*
H5B 1.1141 0.1134 0.5204 0.045*
C6 1.2785 (5) 0.1104 (3) 0.6490 (4) 0.0488 (12)
H6A 1.2885 0.1573 0.6600 0.059*
H6B 1.2907 0.0897 0.7177 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ce1 0.01607 (9) 0.01389 (10) 0.01262 (9) −0.00095 (6) 0.00347 (6) −0.00052 (6)
S1 0.0263 (4) 0.0165 (4) 0.0378 (5) −0.0020 (3) 0.0068 (4) 0.0034 (4)
S2 0.0183 (4) 0.0248 (4) 0.0135 (3) −0.0014 (3) 0.0034 (3) −0.0013 (3)
S3 0.0178 (4) 0.0231 (4) 0.0246 (4) 0.0031 (3) 0.0048 (3) −0.0003 (3)
S4 0.0238 (4) 0.0151 (4) 0.0346 (5) 0.0002 (3) 0.0049 (3) −0.0016 (3)
O1 0.0269 (13) 0.0162 (12) 0.0301 (13) −0.0039 (10) 0.0017 (10) 0.0035 (10)
O2 0.0221 (14) 0.0242 (16) 0.129 (4) −0.0024 (12) 0.0085 (17) −0.0031 (18)
O3 0.0468 (17) 0.0337 (16) 0.0485 (19) −0.0058 (13) 0.0090 (14) −0.0141 (14)
O4 0.084 (3) 0.0323 (17) 0.0453 (19) −0.0127 (16) 0.0176 (18) 0.0116 (14)
O5 0.0414 (15) 0.0198 (12) 0.0197 (12) −0.0089 (11) 0.0079 (10) −0.0012 (10)
O6 0.0318 (13) 0.0166 (12) 0.0197 (12) 0.0016 (10) 0.0045 (9) −0.0005 (9)
O7 0.0197 (13) 0.082 (3) 0.0286 (15) 0.0005 (14) 0.0004 (11) −0.0020 (15)
O8 0.0264 (12) 0.0317 (14) 0.0173 (12) 0.0022 (10) 0.0085 (10) 0.0005 (10)
O9 0.0202 (11) 0.0301 (14) 0.0204 (12) 0.0001 (10) 0.0031 (9) −0.0020 (10)
O10 0.0210 (12) 0.0319 (14) 0.0230 (13) 0.0031 (10) 0.0039 (9) 0.0037 (10)
O11 0.0404 (16) 0.0291 (15) 0.0460 (18) 0.0150 (12) 0.0087 (13) 0.0000 (13)
O12 0.0199 (12) 0.0370 (16) 0.0395 (16) −0.0061 (11) 0.0037 (11) −0.0016 (12)
O13 0.0197 (11) 0.0184 (12) 0.0326 (14) −0.0008 (9) 0.0041 (10) −0.0020 (10)
O14 0.0205 (11) 0.0198 (12) 0.0294 (13) −0.0002 (9) 0.0049 (10) −0.0038 (10)
O15 0.0407 (17) 0.0327 (17) 0.069 (2) 0.0003 (13) 0.0012 (15) 0.0261 (16)
O16 0.0383 (16) 0.0337 (16) 0.060 (2) −0.0041 (13) 0.0110 (14) −0.0263 (15)
O1w 0.0227 (12) 0.0217 (12) 0.0302 (14) −0.0015 (10) 0.0076 (10) −0.0023 (10)
O2w 0.049 (2) 0.054 (2) 0.086 (3) −0.0027 (17) 0.0191 (19) 0.005 (2)
O3w 0.053 (2) 0.064 (2) 0.056 (2) −0.0085 (18) 0.0129 (17) −0.0049 (18)
N1 0.0322 (17) 0.0359 (19) 0.0298 (17) 0.0104 (14) 0.0005 (13) −0.0055 (14)
N2 0.0296 (16) 0.0261 (17) 0.044 (2) −0.0017 (13) 0.0034 (14) −0.0044 (15)
N3 0.037 (2) 0.076 (3) 0.047 (2) 0.022 (2) 0.0011 (17) −0.008 (2)
N4 0.0301 (18) 0.033 (2) 0.073 (3) −0.0063 (15) 0.0152 (18) −0.0067 (18)
C1 0.033 (2) 0.029 (2) 0.030 (2) 0.0023 (16) 0.0053 (15) −0.0011 (16)
C2 0.0249 (18) 0.035 (2) 0.037 (2) −0.0001 (16) 0.0035 (15) −0.0076 (17)
C3 0.033 (2) 0.041 (2) 0.031 (2) 0.0027 (17) 0.0079 (16) −0.0011 (17)
C4 0.035 (2) 0.046 (3) 0.049 (3) 0.0014 (19) 0.0043 (19) −0.012 (2)
C5 0.037 (2) 0.035 (2) 0.042 (2) 0.0055 (18) 0.0066 (18) −0.0005 (18)
C6 0.037 (2) 0.049 (3) 0.062 (3) −0.007 (2) 0.012 (2) −0.015 (2)

Geometric parameters (Å, °)

Ce1—O1 2.252 (2) N1—C1 1.479 (5)
Ce1—O8i 2.352 (2) N1—H11 0.8600
Ce1—O9 2.362 (2) N1—H12 0.8600
Ce1—O1w 2.385 (2) N1—H13 0.8600
Ce1—O13 2.399 (2) N2—C3 1.484 (5)
Ce1—O14 2.413 (2) N2—H21 0.8600
Ce1—O10 2.431 (2) N2—H22 0.8600
Ce1—O6 2.433 (2) N2—H23 0.8600
Ce1—O5 2.467 (2) N3—C4 1.450 (6)
S1—O3 1.444 (3) N3—H31 0.8600
S1—O4 1.448 (3) N3—H32 0.8600
S1—O2 1.459 (3) N3—H33 0.8600
S1—O1 1.515 (2) N4—C6 1.460 (6)
S2—O7 1.427 (3) N4—H41 0.8600
S2—O8 1.477 (2) N4—H42 0.8600
S2—O5 1.485 (3) N4—H43 0.8600
S2—O6 1.503 (2) C1—C2 1.514 (5)
S3—O11 1.437 (3) C1—H1A 0.9700
S3—O12 1.441 (3) C1—H1B 0.9700
S3—O10 1.508 (3) C2—C3 1.510 (5)
S3—O9 1.524 (3) C2—H2A 0.9700
S4—O15 1.448 (3) C2—H2B 0.9700
S4—O16 1.449 (3) C3—H3A 0.9700
S4—O14 1.492 (2) C3—H3B 0.9700
S4—O13 1.505 (2) C4—C5 1.496 (6)
O8—Ce1ii 2.352 (2) C4—H4A 0.9700
O1w—H1w1 0.8368 C4—H4B 0.9700
O1w—H1w2 0.8351 C5—C6 1.486 (6)
O2w—H2w1 0.8401 C5—H5A 0.9700
O2w—H2w2 0.8390 C5—H5B 0.9700
O3w—H3w1 0.8444 C6—H6A 0.9700
O3w—H3w2 0.8478 C6—H6B 0.9700
O1—Ce1—O8i 79.66 (9) S4—O14—Ce1 99.66 (12)
O1—Ce1—O9 91.34 (9) Ce1—O1w—H1w1 110.1
O8i—Ce1—O9 126.76 (9) Ce1—O1w—H1w2 132.2
O1—Ce1—O1w 77.33 (9) H1w1—O1w—H1w2 109.9
O8i—Ce1—O1w 83.33 (9) H2w1—O2w—H2w2 109.4
O9—Ce1—O1w 145.79 (8) H3w1—O3w—H3w2 107.6
O1—Ce1—O13 148.37 (9) C1—N1—H11 109.5
O8i—Ce1—O13 81.78 (9) C1—N1—H12 109.5
O9—Ce1—O13 79.59 (8) H11—N1—H12 109.5
O1w—Ce1—O13 125.54 (8) C1—N1—H13 109.5
O1—Ce1—O14 138.98 (8) H11—N1—H13 109.5
O8i—Ce1—O14 75.94 (9) H12—N1—H13 109.5
O9—Ce1—O14 129.67 (8) C3—N2—H21 109.5
O1w—Ce1—O14 67.56 (8) C3—N2—H22 109.5
O13—Ce1—O14 58.03 (8) H21—N2—H22 109.5
O1—Ce1—O10 76.20 (9) C3—N2—H23 109.5
O8i—Ce1—O10 68.77 (8) H21—N2—H23 109.5
O9—Ce1—O10 58.17 (8) H22—N2—H23 109.5
O1w—Ce1—O10 144.34 (9) C4—N3—H31 109.5
O13—Ce1—O10 73.27 (8) C4—N3—H32 109.5
O14—Ce1—O10 122.81 (8) H31—N3—H32 109.5
O1—Ce1—O6 129.18 (9) C4—N3—H33 109.5
O8i—Ce1—O6 146.41 (8) H31—N3—H33 109.5
O9—Ce1—O6 75.37 (8) H32—N3—H33 109.5
O1w—Ce1—O6 86.94 (8) C6—N4—H41 109.5
O13—Ce1—O6 78.00 (8) C6—N4—H42 109.5
O14—Ce1—O6 70.63 (8) H41—N4—H42 109.5
O10—Ce1—O6 128.51 (8) C6—N4—H43 109.5
O1—Ce1—O5 72.31 (9) H41—N4—H43 109.5
O8i—Ce1—O5 145.65 (8) H42—N4—H43 109.5
O9—Ce1—O5 74.19 (8) N1—C1—C2 109.4 (3)
O1w—Ce1—O5 71.61 (9) N1—C1—H1A 109.8
O13—Ce1—O5 131.94 (8) C2—C1—H1A 109.8
O14—Ce1—O5 113.52 (9) N1—C1—H1B 109.8
O10—Ce1—O5 121.19 (9) C2—C1—H1B 109.8
O6—Ce1—O5 56.88 (8) H1A—C1—H1B 108.2
O3—S1—O4 111.3 (2) C3—C2—C1 113.3 (3)
O3—S1—O2 110.1 (2) C3—C2—H2A 108.9
O4—S1—O2 111.7 (2) C1—C2—H2A 108.9
O3—S1—O1 109.16 (17) C3—C2—H2B 108.9
O4—S1—O1 106.74 (18) C1—C2—H2B 108.9
O2—S1—O1 107.59 (16) H2A—C2—H2B 107.7
O7—S2—O8 112.34 (16) N2—C3—C2 113.0 (3)
O7—S2—O5 113.34 (18) N2—C3—H3A 109.0
O8—S2—O5 108.60 (15) C2—C3—H3A 109.0
O7—S2—O6 111.47 (17) N2—C3—H3B 109.0
O8—S2—O6 107.82 (14) C2—C3—H3B 109.0
O5—S2—O6 102.71 (14) H3A—C3—H3B 107.8
O11—S3—O12 113.18 (17) N3—C4—C5 111.7 (4)
O11—S3—O10 111.37 (17) N3—C4—H4A 109.3
O12—S3—O10 111.43 (16) C5—C4—H4A 109.3
O11—S3—O9 109.67 (17) N3—C4—H4B 109.3
O12—S3—O9 110.01 (16) C5—C4—H4B 109.3
O10—S3—O9 100.44 (14) H4A—C4—H4B 107.9
O15—S4—O16 111.8 (2) C6—C5—C4 111.5 (4)
O15—S4—O14 110.90 (17) C6—C5—H5A 109.3
O16—S4—O14 110.85 (16) C4—C5—H5A 109.3
O15—S4—O13 110.46 (17) C6—C5—H5B 109.3
O16—S4—O13 110.17 (17) C4—C5—H5B 109.3
O14—S4—O13 102.30 (14) H5A—C5—H5B 108.0
S1—O1—Ce1 145.18 (15) N4—C6—C5 113.2 (4)
S2—O5—Ce1 99.61 (12) N4—C6—H6A 108.9
S2—O6—Ce1 100.49 (12) C5—C6—H6A 108.9
S2—O8—Ce1ii 144.13 (15) N4—C6—H6B 108.9
S3—O9—Ce1 101.91 (12) C5—C6—H6B 108.9
S3—O10—Ce1 99.48 (12) H6A—C6—H6B 107.7
S4—O13—Ce1 99.86 (12)
O3—S1—O1—Ce1 96.8 (3) O13—Ce1—O9—S3 76.58 (13)
O4—S1—O1—Ce1 −142.7 (3) O14—Ce1—O9—S3 108.19 (13)
O2—S1—O1—Ce1 −22.7 (4) O10—Ce1—O9—S3 −0.09 (11)
O8i—Ce1—O1—S1 112.7 (3) O6—Ce1—O9—S3 156.76 (14)
O9—Ce1—O1—S1 −120.1 (3) O5—Ce1—O9—S3 −144.11 (14)
O1w—Ce1—O1—S1 27.3 (3) O11—S3—O10—Ce1 −116.21 (16)
O13—Ce1—O1—S1 167.8 (2) O12—S3—O10—Ce1 116.37 (15)
O14—Ce1—O1—S1 58.6 (3) O9—S3—O10—Ce1 −0.13 (15)
O10—Ce1—O1—S1 −176.8 (3) O1—Ce1—O10—S3 100.51 (14)
O6—Ce1—O1—S1 −48.0 (3) O8i—Ce1—O10—S3 −175.39 (15)
O5—Ce1—O1—S1 −47.2 (3) O9—Ce1—O10—S3 0.09 (11)
O7—S2—O5—Ce1 −115.29 (16) O1w—Ce1—O10—S3 143.65 (13)
O8—S2—O5—Ce1 119.11 (13) O13—Ce1—O10—S3 −87.88 (13)
O6—S2—O5—Ce1 5.10 (15) O14—Ce1—O10—S3 −119.49 (13)
O1—Ce1—O5—S2 177.08 (15) O6—Ce1—O10—S3 −28.99 (18)
O8i—Ce1—O5—S2 140.24 (13) O5—Ce1—O10—S3 41.46 (16)
O9—Ce1—O5—S2 −86.27 (13) O15—S4—O13—Ce1 −114.54 (17)
O1w—Ce1—O5—S2 94.93 (14) O16—S4—O13—Ce1 121.47 (16)
O13—Ce1—O5—S2 −26.73 (18) O14—S4—O13—Ce1 3.56 (15)
O14—Ce1—O5—S2 40.62 (15) O1—Ce1—O13—S4 −135.59 (15)
O10—Ce1—O5—S2 −121.98 (13) O8i—Ce1—O13—S4 −81.04 (13)
O6—Ce1—O5—S2 −3.67 (11) O9—Ce1—O13—S4 149.06 (14)
O7—S2—O6—Ce1 116.49 (16) O1w—Ce1—O13—S4 −5.37 (17)
O8—S2—O6—Ce1 −119.76 (13) O14—Ce1—O13—S4 −2.54 (11)
O5—S2—O6—Ce1 −5.19 (15) O10—Ce1—O13—S4 −151.25 (14)
O1—Ce1—O6—S2 4.56 (17) O6—Ce1—O13—S4 71.98 (13)
O8i—Ce1—O6—S2 −139.44 (13) O5—Ce1—O13—S4 91.57 (15)
O9—Ce1—O6—S2 84.09 (12) O15—S4—O14—Ce1 114.25 (18)
O1w—Ce1—O6—S2 −66.35 (12) O16—S4—O14—Ce1 −120.97 (16)
O13—Ce1—O6—S2 166.31 (13) O13—S4—O14—Ce1 −3.54 (15)
O14—Ce1—O6—S2 −133.63 (14) O1—Ce1—O14—S4 146.82 (12)
O10—Ce1—O6—S2 109.35 (13) O8i—Ce1—O14—S4 91.56 (13)
O5—Ce1—O6—S2 3.63 (11) O9—Ce1—O14—S4 −34.86 (17)
O7—S2—O8—Ce1ii 9.8 (3) O1w—Ce1—O14—S4 −179.93 (15)
O5—S2—O8—Ce1ii 136.0 (2) O13—Ce1—O14—S4 2.56 (11)
O6—S2—O8—Ce1ii −113.4 (3) O10—Ce1—O14—S4 38.84 (16)
O11—S3—O9—Ce1 117.48 (15) O6—Ce1—O14—S4 −85.13 (13)
O12—S3—O9—Ce1 −117.42 (15) O5—Ce1—O14—S4 −123.43 (12)
O10—S3—O9—Ce1 0.13 (15) N1—C1—C2—C3 168.6 (3)
O1—Ce1—O9—S3 −72.92 (13) C1—C2—C3—N2 70.0 (5)
O8i—Ce1—O9—S3 5.16 (17) N3—C4—C5—C6 172.7 (4)
O1w—Ce1—O9—S3 −142.07 (13) C4—C5—C6—N4 −174.8 (4)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1w—H1w2···O12iii 0.84 2.05 2.854 (4) 162
O2w—H2w1···O11iii 0.84 2.24 2.935 (5) 140
O2w—H2w2···O15iv 0.84 2.08 2.902 (5) 167
O3w—H3w1···O3iii 0.84 1.90 2.729 (5) 169
O3w—H3w2···O2w 0.85 1.98 2.802 (5) 163
N1—H11···O9iii 0.86 2.04 2.881 (4) 167
N1—H12···O3w 0.86 1.95 2.806 (5) 171
N1—H13···O13v 0.86 2.19 3.036 (4) 166
N2—H21···O16ii 0.86 2.09 2.904 (5) 157
N2—H22···O16iv 0.86 2.25 2.978 (5) 142
N2—H23···O2 0.86 2.49 3.180 (6) 137
N2—H23···O5 0.86 2.44 2.989 (4) 122
N3—H31···O6i 0.86 2.04 2.866 (4) 162
N3—H32···O4 0.86 2.37 2.882 (6) 119
N3—H32···O2wvi 0.86 2.37 3.085 (6) 141
N3—H33···O1 0.86 2.33 3.004 (5) 135
N3—H33···O10 0.86 2.43 3.191 (6) 147
N4—H41···O6vii 0.86 2.34 2.986 (4) 132
N4—H41···O15vii 0.86 2.25 2.951 (5) 138
N4—H43···O4viii 0.86 2.00 2.851 (5) 173

Symmetry codes: (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1/2; (v) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z−1/2; (i) x, −y+1/2, z+1/2; (vi) −x+1, −y, −z+1; (vii) x+1, −y+1/2, z+1/2; (viii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5471).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jabeen, N., Ahmad, S., Meer, A. F., Khan, I. U. & Ng, S. W. (2010). Acta Cryst. E66, m797–m798. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008324/bt5471sup1.cif

e-67-0m413-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008324/bt5471Isup2.hkl

e-67-0m413-Isup2.hkl (259.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES