Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o820. doi: 10.1107/S1600536811007689

4-({[6-(4-Chloro­benz­yl)-4-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfan­yl}acetyl)-3-phenyl­sydnone

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3099780  PMID: 21754104

Abstract

In the title syndone (1,2,3-oxadiazol-3-ylium-5-olate) compound, C21H16ClN5O4S, the dihedral angle between the benzene and oxadiazole rings is 55.62 (11)° and that between the triazine and the chloro-substituted phenyl rings is 82.45 (9)°. There is an intra­molecular C—H⋯S hydrogen bond, which generates an S(5) ring motif. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(20) loops. The dimers are connected by C—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008).graphic file with name e-67-0o820-scheme1.jpg

Experimental

Crystal data

  • C21H16ClN5O4S

  • M r = 469.90

  • Triclinic, Inline graphic

  • a = 6.4604 (1) Å

  • b = 10.1634 (2) Å

  • c = 16.9901 (4) Å

  • α = 105.264 (1)°

  • β = 92.103 (1)°

  • γ = 97.363 (1)°

  • V = 1064.44 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.62 × 0.39 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.828, T max = 0.959

  • 21841 measured reflections

  • 6389 independent reflections

  • 4781 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.154

  • S = 1.05

  • 6389 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007689/hb5811sup1.cif

e-67-0o820-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007689/hb5811Isup2.hkl

e-67-0o820-Isup2.hkl (306.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O2i 0.97 2.52 3.429 (3) 157
C11—H11A⋯S1 0.96 2.12 2.7577 (17) 122
C11—H11B⋯N1ii 0.96 2.36 3.066 (2) 130
C11—H11B⋯N2ii 0.96 2.40 3.0304 (19) 123
C11—H11C⋯O1iii 0.96 2.07 3.021 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Sydnones (1,2,3-oxadiazol-3-ylium-5-olates) are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities being reported (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising anti-microbial properties (Jyothi et al., 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 6-(4-chlorobenzyl)-4-methyl-3- sulfanyl-1,2,4-triazin-5(4H)-one with 3-aryl-4-bromoacetylsydnones yielded S-substituted triazinone derivatives (Jyothi et al., 2008).

In the title compound (Fig. 1), the rings A (C16–C21), B (N4/N5/O4/C14–C15), C (N1/N2/N3/C8–C10) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of the rings are A/B = 55.62 (11)°, A/C = 83.22 (10)°, A/D = 49.75 (11)°, B/C = 87.81 (9)°, B/D = 8.97 (10)° and C/D = 82.45 (9)°.

In the crystal (Fig. 2), symmetry-related molecules are linked into centrosymmetic dimers via pairs of intermolecular C—H···O hydrogen bonds, generating an R22(20) ring. Furthermore, these dimers are connected via C—H···N and C—H···O hydrogen bonds. There is an intramolecular C—H···S hydrogen bond, which generates an S(5) ring motif.

Experimental

To a mixture of 4-bromoacetyl-3-phenylsydnone (0.01 mol) and 6-(4-chlorobenzyl)-4-methyl-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2-3hours. The solid product separated was filtered and dried. It was then recrystallized from ethanol. Colourless plates of (I) were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I).

Crystal data

C21H16ClN5O4S Z = 2
Mr = 469.90 F(000) = 484
Triclinic, P1 Dx = 1.466 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4604 (1) Å Cell parameters from 9469 reflections
b = 10.1634 (2) Å θ = 2.5–30.3°
c = 16.9901 (4) Å µ = 0.32 mm1
α = 105.264 (1)° T = 296 K
β = 92.103 (1)° Plate, colourless
γ = 97.363 (1)° 0.62 × 0.39 × 0.13 mm
V = 1064.44 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6389 independent reflections
Radiation source: fine-focus sealed tube 4781 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 30.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.828, Tmax = 0.959 k = −14→14
21841 measured reflections l = −24→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0757P)2 + 0.3213P] where P = (Fo2 + 2Fc2)/3
6389 reflections (Δ/σ)max < 0.001
290 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.62801 (16) 0.17208 (7) −0.44701 (4) 0.0927 (3)
S1 0.74666 (7) 0.42674 (5) 0.10616 (3) 0.04942 (14)
O1 0.8261 (2) −0.00776 (14) −0.09214 (9) 0.0536 (3)
O2 0.4372 (2) 0.37342 (15) 0.22327 (10) 0.0631 (4)
O3 0.2131 (2) 0.70857 (15) 0.14094 (9) 0.0569 (4)
O4 −0.0096 (2) 0.68960 (14) 0.23895 (9) 0.0525 (3)
N1 0.3637 (2) 0.14727 (17) −0.05789 (10) 0.0455 (3)
N2 0.4389 (2) 0.26204 (16) 0.00528 (9) 0.0432 (3)
N3 0.76804 (19) 0.18731 (14) 0.00212 (8) 0.0357 (3)
N4 −0.0422 (3) 0.61324 (17) 0.29404 (10) 0.0513 (4)
N5 0.1021 (2) 0.53269 (14) 0.28321 (9) 0.0391 (3)
C1 0.6273 (3) −0.0406 (2) −0.28017 (12) 0.0538 (5)
H1A 0.7109 −0.0981 −0.2639 0.065*
C2 0.6816 (4) 0.0139 (2) −0.34463 (13) 0.0614 (5)
H2A 0.8010 −0.0068 −0.3715 0.074*
C3 0.5567 (4) 0.0987 (2) −0.36822 (12) 0.0573 (5)
C4 0.3787 (4) 0.1282 (2) −0.33058 (13) 0.0625 (6)
H4A 0.2938 0.1839 −0.3481 0.075*
C5 0.3265 (4) 0.0743 (2) −0.26612 (13) 0.0559 (5)
H5A 0.2063 0.0950 −0.2398 0.067*
C6 0.4501 (3) −0.01022 (17) −0.23998 (11) 0.0429 (4)
C7 0.3994 (3) −0.05628 (19) −0.16429 (12) 0.0491 (4)
H7A 0.2491 −0.0782 −0.1632 0.059*
H7B 0.4621 −0.1381 −0.1645 0.059*
C8 0.4848 (3) 0.05888 (18) −0.09049 (10) 0.0391 (3)
C9 0.7063 (3) 0.07191 (17) −0.06296 (10) 0.0381 (3)
C10 0.6336 (2) 0.27910 (17) 0.03115 (10) 0.0351 (3)
C11 0.9776 (2) 0.22301 (18) 0.03403 (11) 0.0415 (4)
H11A 0.9900 0.3032 0.0799 0.062*
H11B 1.0642 0.2424 −0.0074 0.062*
H11C 1.0218 0.1478 0.0515 0.062*
C12 0.5200 (3) 0.51093 (19) 0.13034 (12) 0.0451 (4)
H12A 0.5638 0.6097 0.1483 0.054*
H12B 0.4277 0.4916 0.0811 0.054*
C13 0.3992 (3) 0.46689 (17) 0.19597 (10) 0.0396 (3)
C14 0.2332 (2) 0.54916 (16) 0.22475 (10) 0.0364 (3)
C15 0.1633 (3) 0.65315 (17) 0.19282 (11) 0.0421 (4)
C16 0.0970 (3) 0.44216 (18) 0.33652 (10) 0.0433 (4)
C17 0.2718 (4) 0.4479 (2) 0.38688 (13) 0.0567 (5)
H17A 0.3960 0.5035 0.3843 0.068*
C18 0.2562 (5) 0.3678 (3) 0.44141 (15) 0.0719 (7)
H18A 0.3719 0.3693 0.4760 0.086*
C19 0.0713 (5) 0.2859 (3) 0.44518 (15) 0.0728 (7)
H19A 0.0623 0.2345 0.4832 0.087*
C20 −0.1000 (5) 0.2797 (3) 0.39297 (16) 0.0711 (6)
H20A −0.2230 0.2223 0.3947 0.085*
C21 −0.0893 (3) 0.3590 (2) 0.33778 (13) 0.0568 (5)
H21A −0.2043 0.3564 0.3026 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1528 (8) 0.0725 (4) 0.0568 (4) 0.0023 (4) 0.0182 (4) 0.0294 (3)
S1 0.0344 (2) 0.0530 (3) 0.0574 (3) 0.01232 (18) 0.00630 (18) 0.0057 (2)
O1 0.0572 (8) 0.0531 (8) 0.0570 (8) 0.0312 (6) 0.0076 (6) 0.0144 (6)
O2 0.0748 (10) 0.0590 (9) 0.0762 (10) 0.0393 (8) 0.0273 (8) 0.0373 (8)
O3 0.0646 (9) 0.0527 (8) 0.0686 (9) 0.0205 (7) 0.0149 (7) 0.0356 (7)
O4 0.0538 (7) 0.0499 (7) 0.0648 (8) 0.0269 (6) 0.0156 (6) 0.0239 (6)
N1 0.0313 (7) 0.0565 (9) 0.0502 (8) 0.0091 (6) 0.0079 (6) 0.0148 (7)
N2 0.0291 (6) 0.0539 (8) 0.0484 (8) 0.0135 (6) 0.0088 (5) 0.0125 (7)
N3 0.0279 (6) 0.0444 (7) 0.0417 (7) 0.0138 (5) 0.0086 (5) 0.0188 (6)
N4 0.0519 (9) 0.0524 (9) 0.0575 (9) 0.0239 (7) 0.0160 (7) 0.0192 (7)
N5 0.0414 (7) 0.0383 (7) 0.0397 (7) 0.0121 (6) 0.0057 (5) 0.0105 (6)
C1 0.0592 (11) 0.0546 (11) 0.0531 (11) 0.0214 (9) 0.0073 (9) 0.0173 (9)
C2 0.0670 (13) 0.0644 (13) 0.0534 (12) 0.0163 (11) 0.0188 (10) 0.0119 (10)
C3 0.0891 (16) 0.0424 (10) 0.0387 (9) 0.0044 (10) 0.0046 (9) 0.0104 (8)
C4 0.0881 (16) 0.0538 (11) 0.0527 (11) 0.0292 (11) 0.0012 (11) 0.0184 (9)
C5 0.0625 (12) 0.0569 (11) 0.0535 (11) 0.0246 (10) 0.0068 (9) 0.0158 (9)
C6 0.0491 (9) 0.0370 (8) 0.0423 (9) 0.0083 (7) 0.0009 (7) 0.0094 (7)
C7 0.0521 (10) 0.0431 (9) 0.0537 (10) 0.0030 (8) 0.0048 (8) 0.0174 (8)
C8 0.0383 (8) 0.0416 (8) 0.0431 (8) 0.0066 (6) 0.0086 (6) 0.0204 (7)
C9 0.0416 (8) 0.0415 (8) 0.0406 (8) 0.0156 (7) 0.0108 (6) 0.0219 (7)
C10 0.0301 (7) 0.0432 (8) 0.0385 (8) 0.0127 (6) 0.0112 (5) 0.0178 (6)
C11 0.0232 (6) 0.0506 (9) 0.0503 (9) 0.0161 (6) 0.0015 (6) 0.0079 (7)
C12 0.0439 (9) 0.0445 (9) 0.0519 (10) 0.0170 (7) 0.0130 (7) 0.0155 (8)
C13 0.0411 (8) 0.0362 (8) 0.0438 (9) 0.0137 (6) 0.0056 (6) 0.0107 (7)
C14 0.0381 (8) 0.0344 (7) 0.0391 (8) 0.0107 (6) 0.0050 (6) 0.0115 (6)
C15 0.0439 (9) 0.0358 (8) 0.0501 (9) 0.0131 (7) 0.0062 (7) 0.0136 (7)
C16 0.0524 (10) 0.0429 (9) 0.0364 (8) 0.0105 (7) 0.0069 (7) 0.0117 (7)
C17 0.0613 (12) 0.0568 (11) 0.0534 (11) 0.0045 (9) −0.0046 (9) 0.0204 (9)
C18 0.0925 (18) 0.0740 (15) 0.0542 (12) 0.0134 (14) −0.0123 (12) 0.0280 (11)
C19 0.105 (2) 0.0678 (15) 0.0543 (13) 0.0086 (14) 0.0090 (12) 0.0322 (11)
C20 0.0845 (17) 0.0686 (15) 0.0654 (14) −0.0010 (13) 0.0162 (12) 0.0313 (12)
C21 0.0565 (11) 0.0627 (12) 0.0536 (11) 0.0033 (9) 0.0070 (9) 0.0217 (10)

Geometric parameters (Å, °)

Cl1—C3 1.744 (2) C5—H5A 0.9300
S1—C10 1.7472 (18) C6—C7 1.513 (3)
S1—C12 1.7960 (17) C7—C8 1.503 (3)
O1—C9 1.2159 (19) C7—H7A 0.9700
O2—C13 1.209 (2) C7—H7B 0.9700
O3—C15 1.197 (2) C8—C9 1.468 (2)
O4—N4 1.370 (2) C11—H11A 0.9600
O4—C15 1.420 (2) C11—H11B 0.9600
N1—C8 1.295 (2) C11—H11C 0.9600
N1—N2 1.381 (2) C12—C13 1.513 (2)
N2—C10 1.292 (2) C12—H12A 0.9700
N3—C10 1.3655 (18) C12—H12B 0.9700
N3—C9 1.386 (2) C13—C14 1.463 (2)
N3—C11 1.4055 (19) C14—C15 1.422 (2)
N4—N5 1.3046 (19) C16—C17 1.377 (3)
N5—C14 1.358 (2) C16—C21 1.383 (3)
N5—C16 1.449 (2) C17—C18 1.383 (3)
C1—C6 1.381 (3) C17—H17A 0.9300
C1—C2 1.388 (3) C18—C19 1.379 (4)
C1—H1A 0.9300 C18—H18A 0.9300
C2—C3 1.375 (3) C19—C20 1.377 (4)
C2—H2A 0.9300 C19—H19A 0.9300
C3—C4 1.365 (3) C20—C21 1.386 (3)
C4—C5 1.382 (3) C20—H20A 0.9300
C4—H4A 0.9300 C21—H21A 0.9300
C5—C6 1.387 (3)
C10—S1—C12 100.06 (8) N2—C10—S1 121.47 (12)
N4—O4—C15 110.86 (12) N3—C10—S1 114.61 (11)
C8—N1—N2 120.99 (14) N3—C11—H11A 109.5
C10—N2—N1 118.28 (14) N3—C11—H11B 109.5
C10—N3—C9 121.17 (13) H11A—C11—H11B 109.5
C10—N3—C11 117.25 (14) N3—C11—H11C 109.5
C9—N3—C11 121.14 (13) H11A—C11—H11C 109.5
N5—N4—O4 105.20 (13) H11B—C11—H11C 109.5
N4—N5—C14 114.60 (14) C13—C12—S1 113.61 (12)
N4—N5—C16 114.42 (14) C13—C12—H12A 108.8
C14—N5—C16 130.97 (13) S1—C12—H12A 108.8
C6—C1—C2 120.63 (18) C13—C12—H12B 108.8
C6—C1—H1A 119.7 S1—C12—H12B 108.8
C2—C1—H1A 119.7 H12A—C12—H12B 107.7
C3—C2—C1 119.2 (2) O2—C13—C14 122.62 (16)
C3—C2—H2A 120.4 O2—C13—C12 123.39 (15)
C1—C2—H2A 120.4 C14—C13—C12 113.98 (14)
C4—C3—C2 121.4 (2) N5—C14—C15 105.91 (13)
C4—C3—Cl1 119.07 (17) N5—C14—C13 126.38 (14)
C2—C3—Cl1 119.57 (19) C15—C14—C13 127.49 (15)
C3—C4—C5 119.04 (19) O3—C15—O4 120.05 (15)
C3—C4—H4A 120.5 O3—C15—C14 136.52 (17)
C5—C4—H4A 120.5 O4—C15—C14 103.43 (14)
C4—C5—C6 121.2 (2) C17—C16—C21 122.79 (18)
C4—C5—H5A 119.4 C17—C16—N5 119.23 (17)
C6—C5—H5A 119.4 C21—C16—N5 117.87 (16)
C1—C6—C5 118.58 (18) C16—C17—C18 117.6 (2)
C1—C6—C7 121.61 (17) C16—C17—H17A 121.2
C5—C6—C7 119.59 (17) C18—C17—H17A 121.2
C8—C7—C6 108.29 (14) C19—C18—C17 120.9 (2)
C8—C7—H7A 110.0 C19—C18—H18A 119.5
C6—C7—H7A 110.0 C17—C18—H18A 119.5
C8—C7—H7B 110.0 C20—C19—C18 120.3 (2)
C6—C7—H7B 110.0 C20—C19—H19A 119.8
H7A—C7—H7B 108.4 C18—C19—H19A 119.8
N1—C8—C9 123.14 (16) C19—C20—C21 120.1 (2)
N1—C8—C7 118.42 (16) C19—C20—H20A 120.0
C9—C8—C7 118.25 (15) C21—C20—H20A 120.0
O1—C9—N3 122.23 (16) C16—C21—C20 118.2 (2)
O1—C9—C8 125.41 (17) C16—C21—H21A 120.9
N3—C9—C8 112.36 (13) C20—C21—H21A 120.9
N2—C10—N3 123.91 (16)
C8—N1—N2—C10 0.0 (2) C11—N3—C10—S1 −1.28 (19)
C15—O4—N4—N5 −0.1 (2) C12—S1—C10—N2 4.33 (16)
O4—N4—N5—C14 0.5 (2) C12—S1—C10—N3 −176.91 (12)
O4—N4—N5—C16 179.66 (14) C10—S1—C12—C13 87.66 (14)
C6—C1—C2—C3 0.0 (3) S1—C12—C13—O2 −7.7 (2)
C1—C2—C3—C4 −1.3 (3) S1—C12—C13—C14 171.37 (13)
C1—C2—C3—Cl1 177.98 (17) N4—N5—C14—C15 −0.7 (2)
C2—C3—C4—C5 1.7 (3) C16—N5—C14—C15 −179.67 (17)
Cl1—C3—C4—C5 −177.58 (17) N4—N5—C14—C13 −175.56 (16)
C3—C4—C5—C6 −0.8 (3) C16—N5—C14—C13 5.5 (3)
C2—C1—C6—C5 0.8 (3) O2—C13—C14—N5 −0.6 (3)
C2—C1—C6—C7 −173.70 (19) C12—C13—C14—N5 −179.66 (16)
C4—C5—C6—C1 −0.4 (3) O2—C13—C14—C15 −174.35 (19)
C4—C5—C6—C7 174.22 (19) C12—C13—C14—C15 6.6 (3)
C1—C6—C7—C8 94.1 (2) N4—O4—C15—O3 179.13 (17)
C5—C6—C7—C8 −80.3 (2) N4—O4—C15—C14 −0.28 (19)
N2—N1—C8—C9 0.8 (3) N5—C14—C15—O3 −178.7 (2)
N2—N1—C8—C7 −174.08 (15) C13—C14—C15—O3 −3.9 (4)
C6—C7—C8—N1 91.90 (19) N5—C14—C15—O4 0.54 (18)
C6—C7—C8—C9 −83.27 (19) C13—C14—C15—O4 175.34 (16)
C10—N3—C9—O1 176.61 (15) N4—N5—C16—C17 −122.28 (19)
C11—N3—C9—O1 4.5 (2) C14—N5—C16—C17 56.7 (3)
C10—N3—C9—C8 −3.8 (2) N4—N5—C16—C21 54.0 (2)
C11—N3—C9—C8 −175.91 (14) C14—N5—C16—C21 −127.0 (2)
N1—C8—C9—O1 −179.33 (17) C21—C16—C17—C18 −1.0 (3)
C7—C8—C9—O1 −4.4 (2) N5—C16—C17—C18 175.10 (19)
N1—C8—C9—N3 1.0 (2) C16—C17—C18—C19 −0.3 (4)
C7—C8—C9—N3 175.98 (14) C17—C18—C19—C20 1.7 (4)
N1—N2—C10—N3 −2.9 (2) C18—C19—C20—C21 −1.8 (4)
N1—N2—C10—S1 175.76 (12) C17—C16—C21—C20 0.8 (3)
C9—N3—C10—N2 5.0 (2) N5—C16—C21—C20 −175.31 (19)
C11—N3—C10—N2 177.45 (16) C19—C20—C21—C16 0.6 (4)
C9—N3—C10—S1 −173.73 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7B···O2i 0.97 2.52 3.429 (3) 157
C11—H11A···S1 0.96 2.12 2.7577 (17) 122
C11—H11B···N1ii 0.96 2.36 3.066 (2) 130
C11—H11B···N2ii 0.96 2.40 3.0304 (19) 123
C11—H11C···O1iii 0.96 2.07 3.021 (2) 169

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5811).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  3. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007689/hb5811sup1.cif

e-67-0o820-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007689/hb5811Isup2.hkl

e-67-0o820-Isup2.hkl (306.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES