Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):m452. doi: 10.1107/S1600536811009238

catena-Poly[[bis­(2-amino­ethane­sulfon­ato-κ2 N,O)nickel(II)]-μ-1,4-bis­(1H-imid­azol-1-yl)benzene-κ2 N 3:N 3′]

Jin-Biao Liu a,*
PMCID: PMC3099785  PMID: 21753971

Abstract

In the hydro­thermally prepared title coordination polymer, [Ni(C2H6NO3S)2(C12H10N4)]n, the NiII ion and the 1,4-bis­(1H-imidazol-1-yl)benzene ligand occupy special positions on inversion centers. The metal ion shows a slightly distorted octa­hedral coordination geometry, being linked to two N atoms of two 1,4-bis­(imidazol-1-yl)benzene ligands and to two O and two N atoms of two chelating 2-amino­ethane­sulfonate ligands. The 1,4-bis­(imidazol-1-yl)benzene ligands bridge symmetry-related NiII ions forming polymeric chains along the [110] direction.

Related literature

For some examples of transition metal complexes of 2-amino­ethane­sulfonic acid (taurine), see: Cai et al. (2004, 2006); Jiang et al. (2006, 2005).graphic file with name e-67-0m452-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H6NO3S)2(C12H10N4)]

  • M r = 517.23

  • Monoclinic, Inline graphic

  • a = 7.4559 (15) Å

  • b = 11.494 (2) Å

  • c = 12.481 (3) Å

  • β = 96.19 (3)°

  • V = 1063.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 295 K

  • 0.15 × 0.13 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.841, T max = 0.891

  • 10967 measured reflections

  • 2426 independent reflections

  • 1974 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.097

  • S = 1.14

  • 2426 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009238/gk2349sup1.cif

e-67-0m452-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009238/gk2349Isup2.hkl

e-67-0m452-Isup2.hkl (119.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

N1—Ni1 2.079 (2)
Ni1—O1 2.1070 (18)
Ni1—N2 2.126 (2)

Acknowledgments

This work was supported by the Natural Science Foundation of Tian Jin.

supplementary crystallographic information

Comment

Taurine, an amino acid containing sulfur, has important physiological functions. In fact, taurine is one of the most abundant free amino-acid-like compounds found in the heart, the skeletal muscles and the nervous system. As part of our research on taurine complexes we report here the synthesis and crystal structure of the title nikel(II) complex with taurine and 1,4-bis(imidazol-1-yl)benzene.

The crystal structure shows that two taurine anions chelate to the NiII ion via terminal N and O atoms. In addition the NiII ion is coordinated to two bridging 1,4-bis(imidazol-1-yl)benzene ligands to form one-dimensional polymer. The NiII ion and 1,4-bis(imidazol-1-yl)benzene ligand are located on inversion center. The coordination environment around nickel(II) is shown in Fig. 1. The NiII atom is six-coordinated in a distorted octahedral geometry. N-H···O and C-H···O hydrogen bonds assemble the coordination polymers into a three-dimensional supramolecular network (Fig. 2). One of the taurine N–H groups is not involved in hydrogen bonding.

Experimental

Reagents and solvents used were of commercially available quality. A water solution (10 ml) of 2-aminoethanesulfonic acid (2.0 mmol) and KOH(2.0 mmol) was mixed with water solution (10 ml) of Ni(NO3)2.2H2O (1.0 mmol). 1,4-Bis(imidazol-1-yl)benzene (1 mmol) was added to the mixture, then dropped into a 23 ml Teflon-stainless steel reactor and heated at 423 K for 4 d. After cooling to room temperature, single crystals of the title compound were obtained (yield 30%). Analysis found (%): C37.27, H 4.36, N 16.32; calculated (%): C 37.14, H 4.19, N 16.24, IR (KBr, cm-1): 1031, 1166, 1233 (–SO3), 3256.6, 3300.8 (N—H).

Refinement

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.90 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with displacement ellipsoids shown at the 30% probability level. Symmetry code for the atoms with the B label: 2-x, -y, 2-z.

Fig. 2.

Fig. 2.

The crystal packing viewed down the a axis. Hydrogen bonds and short contacts are shown with dashed lines.

Crystal data

[Ni(C2H6NO3S)2(C12H10N4)] F(000) = 536
Mr = 517.23 Dx = 1.615 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9767 reflections
a = 7.4559 (15) Å θ = 3.0–27.5°
b = 11.494 (2) Å µ = 1.16 mm1
c = 12.481 (3) Å T = 295 K
β = 96.19 (3)° Block, blue
V = 1063.4 (4) Å3 0.15 × 0.13 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 2426 independent reflections
Radiation source: fine-focus sealed tube 1974 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.841, Tmax = 0.891 k = −14→14
10967 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.7272P] where P = (Fo2 + 2Fc2)/3
2426 reflections (Δ/σ)max < 0.001
142 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.8455 (3) −0.0438 (2) 0.85704 (19) 0.0309 (6)
H1A 0.8967 −0.1070 0.8304 0.037*
H1B 0.7365 −0.0661 0.8744 0.037*
C1 0.8139 (5) 0.0411 (3) 0.7680 (3) 0.0441 (9)
H1C 0.7468 0.1069 0.7916 0.053*
H1D 0.7420 0.0050 0.7076 0.053*
Ni1 1.0000 0.0000 1.0000 0.01926 (15)
S1 1.10651 (11) 0.18961 (6) 0.81832 (6) 0.0343 (2)
N2 0.7881 (3) 0.11099 (19) 1.03850 (19) 0.0270 (5)
O1 1.1241 (3) 0.14000 (16) 0.92774 (15) 0.0286 (5)
N3 0.6253 (3) 0.27144 (19) 1.04500 (18) 0.0252 (5)
C7 0.5608 (4) 0.3874 (2) 1.0207 (2) 0.0233 (6)
O3 0.9938 (3) 0.29267 (19) 0.8110 (2) 0.0523 (7)
O2 1.2806 (3) 0.2066 (2) 0.7786 (2) 0.0556 (7)
C3 0.7630 (4) 0.2182 (2) 1.0020 (2) 0.0310 (7)
H3 0.8314 0.2529 0.9527 0.037*
C5 0.6610 (4) 0.0958 (3) 1.1103 (3) 0.0363 (8)
H5 0.6455 0.0278 1.1486 0.044*
C4 0.5626 (4) 0.1936 (3) 1.1170 (3) 0.0352 (8)
H4 0.4714 0.2061 1.1609 0.042*
C6 0.6539 (5) 0.4610 (3) 0.9619 (3) 0.0551 (11)
H6 0.7584 0.4353 0.9349 0.066*
C2 0.9901 (5) 0.0834 (3) 0.7320 (3) 0.0456 (9)
H2A 0.9659 0.1163 0.6604 0.055*
H2B 1.0690 0.0169 0.7270 0.055*
C8 0.4054 (5) 0.4257 (3) 1.0584 (3) 0.0551 (11)
H8 0.3393 0.3757 1.0977 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0350 (14) 0.0287 (13) 0.0289 (14) −0.0018 (11) 0.0032 (11) −0.0013 (11)
C1 0.051 (2) 0.046 (2) 0.0330 (19) 0.0049 (17) −0.0058 (16) 0.0065 (15)
Ni1 0.0240 (3) 0.0133 (2) 0.0217 (3) 0.0050 (2) 0.00797 (19) 0.00226 (19)
S1 0.0476 (5) 0.0250 (4) 0.0340 (4) 0.0060 (3) 0.0211 (4) 0.0105 (3)
N2 0.0303 (13) 0.0198 (12) 0.0326 (14) 0.0079 (10) 0.0114 (11) 0.0040 (10)
O1 0.0359 (12) 0.0209 (10) 0.0307 (11) −0.0019 (9) 0.0104 (9) 0.0061 (8)
N3 0.0255 (13) 0.0181 (12) 0.0339 (13) 0.0077 (10) 0.0114 (11) 0.0028 (10)
C7 0.0245 (14) 0.0172 (13) 0.0289 (15) 0.0076 (11) 0.0061 (12) 0.0001 (11)
O3 0.0687 (18) 0.0327 (13) 0.0596 (16) 0.0189 (12) 0.0253 (13) 0.0237 (11)
O2 0.0602 (17) 0.0518 (16) 0.0625 (17) −0.0040 (12) 0.0420 (14) 0.0083 (13)
C3 0.0374 (17) 0.0217 (15) 0.0375 (17) 0.0116 (12) 0.0199 (14) 0.0063 (12)
C5 0.0379 (18) 0.0232 (16) 0.051 (2) 0.0074 (13) 0.0217 (16) 0.0092 (14)
C4 0.0314 (17) 0.0276 (16) 0.050 (2) 0.0064 (13) 0.0205 (15) 0.0082 (14)
C6 0.050 (2) 0.0357 (18) 0.088 (3) 0.0263 (17) 0.050 (2) 0.0252 (19)
C2 0.070 (3) 0.044 (2) 0.0235 (17) 0.0024 (18) 0.0096 (16) 0.0078 (14)
C8 0.052 (2) 0.0331 (19) 0.089 (3) 0.0228 (17) 0.048 (2) 0.0285 (19)

Geometric parameters (Å, °)

N1—C1 1.479 (4) N3—C3 1.355 (3)
N1—Ni1 2.079 (2) N3—C4 1.384 (4)
N1—H1A 0.9000 N3—C7 1.438 (3)
N1—H1B 0.9000 C7—C6 1.359 (4)
C1—C2 1.513 (5) C7—C8 1.369 (4)
C1—H1C 0.9700 C3—H3 0.9300
C1—H1D 0.9700 C5—C4 1.349 (4)
Ni1—O1 2.1070 (18) C5—H5 0.9300
Ni1—N2 2.126 (2) C4—H4 0.9300
S1—O3 1.450 (2) C6—H6 0.9300
S1—O2 1.452 (2) C2—H2A 0.9700
S1—O1 1.473 (2) C2—H2B 0.9700
S1—C2 1.790 (4) C8—C6i 1.390 (4)
N2—C3 1.320 (3) C8—H8 0.9300
N2—C5 1.384 (4)
C1—N1—Ni1 120.9 (2) O1—S1—C2 106.43 (13)
C1—N1—H1A 107.1 C3—N2—C5 105.1 (2)
Ni1—N1—H1A 107.1 C3—N2—Ni1 124.28 (19)
C1—N1—H1B 107.1 C5—N2—Ni1 130.42 (18)
Ni1—N1—H1B 107.1 S1—O1—Ni1 133.89 (13)
H1A—N1—H1B 106.8 C3—N3—C4 106.8 (2)
N1—C1—C2 111.2 (3) C3—N3—C7 125.9 (2)
N1—C1—H1C 109.4 C4—N3—C7 127.4 (2)
C2—C1—H1C 109.4 C6—C7—C8 119.1 (3)
N1—C1—H1D 109.4 C6—C7—N3 120.8 (2)
C2—C1—H1D 109.4 C8—C7—N3 120.1 (3)
H1C—C1—H1D 108.0 N2—C3—N3 111.7 (2)
N1ii—Ni1—N1 180.0 N2—C3—H3 124.1
N1ii—Ni1—O1ii 92.64 (9) N3—C3—H3 124.1
N1—Ni1—O1ii 87.36 (9) C4—C5—N2 110.5 (3)
N1ii—Ni1—O1 87.36 (9) C4—C5—H5 124.8
N1—Ni1—O1 92.64 (9) N2—C5—H5 124.8
O1ii—Ni1—O1 180.0 C5—C4—N3 105.9 (3)
N1ii—Ni1—N2ii 89.01 (10) C5—C4—H4 127.0
N1—Ni1—N2ii 90.99 (10) N3—C4—H4 127.0
O1ii—Ni1—N2ii 90.57 (8) C7—C6—C8i 120.8 (3)
O1—Ni1—N2ii 89.43 (8) C7—C6—H6 119.6
N1ii—Ni1—N2 90.99 (10) C8i—C6—H6 119.6
N1—Ni1—N2 89.01 (10) C1—C2—S1 114.9 (2)
O1ii—Ni1—N2 89.43 (8) C1—C2—H2A 108.5
O1—Ni1—N2 90.57 (8) S1—C2—H2A 108.5
N2ii—Ni1—N2 180.000 (1) C1—C2—H2B 108.5
O3—S1—O2 113.74 (15) S1—C2—H2B 108.5
O3—S1—O1 111.58 (13) H2A—C2—H2B 107.5
O2—S1—O1 112.03 (14) C7—C8—C6i 120.1 (3)
O3—S1—C2 106.22 (17) C7—C8—H8 119.9
O2—S1—C2 106.24 (16) C6i—C8—H8 119.9

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1a···O3iii 0.90 2.33 3.148 (3) 151
C3—H3···O1 0.93 2.59 3.075 (4) 113
C3—H3···O3 0.93 2.29 3.203 (4) 165
C4—H4···O2iv 0.93 2.37 3.274 (4) 163
C8—H8···O2iv 0.93 2.53 3.359 (4) 149

Symmetry codes: (iii) −x+2, y−1/2, −z+3/2; (iv) x−1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2349).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059–m3061.
  3. Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661.
  4. Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878–m880.
  5. Jiang, Y.-M., Wang, X.-J., Ying, X.-J., Zhong, F., Cai, J.-H. & He, K.-H. (2006). Inorg. Chem. Commun. 9, 1063–1066.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009238/gk2349sup1.cif

e-67-0m452-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009238/gk2349Isup2.hkl

e-67-0m452-Isup2.hkl (119.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES