Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 23;67(Pt 4):o948. doi: 10.1107/S160053681101004X

2,4,6-Trinitro-N-[4-(phenyl­diazen­yl)phen­yl]aniline

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC3099790  PMID: 21754214

Abstract

The title compound, C18H12N6O6, was prepared from the reaction of 4-(phenyl­diazen­yl)aniline (aniline yellow) with picryl­sulfonic acid. The dihedral angle formed by the two benzene rings of the diphenyl­diazenyl ring system is 6.55 (13)° and that formed by the rings of the picrate–aniline ring system is 48.76 (12)°. The mol­ecule contains an intra­molecular aniline–nitro N—H⋯O hydrogen bond.

Related literature

For the reaction of picryl chloride with isomeric amino­benzoic acids, see: Crocker & Matthews (1911). For the application of the title compound in dyeing technology, see: Beretta (1926);. For structural data on N-picryl-substituted anilines, see: Forlani et al. (1992); Pan et al. (2007); Smith et al. (2007); Braun et al. (2008); Smith et al. (2009). For diazenyl-protonated salts of aniline yellow, see: Mahmoudkhani & Langer (2001); Smith et al. (2009, 2011).graphic file with name e-67-0o948-scheme1.jpg

Experimental

Crystal data

  • C18H12N6O6

  • M r = 408.34

  • Monoclinic, Inline graphic

  • a = 7.4255 (4) Å

  • b = 7.6613 (4) Å

  • c = 16.1510 (9) Å

  • β = 98.160 (5)°

  • V = 909.51 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.30 × 0.30 × 0.15 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.920, T max = 0.990

  • 6768 measured reflections

  • 2297 independent reflections

  • 1407 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.058

  • S = 0.86

  • 2297 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101004X/lh5220sup1.cif

e-67-0o948-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101004X/lh5220Isup2.hkl

e-67-0o948-Isup2.hkl (110.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O21A 0.86 1.98 2.607 (3) 129

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

The diazo-dye precursor aniline yellow [4-(phenyldiazenyl)aniline] reacts with strong acids to form purple-black to red-black diazenyl-protonated salts (Mahmoudkhani & Langer, 2001; Smith et al., 2009, 2011). However, our 1:1 stoichiometric reaction of aniline yellow with 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) in 50% ethanol-water atypically gave orange-red crystals. This indicated a substitution reaction typical of this acid with anilines, giving N-picryl products with elimination of the sulfonate group. Reaction of picryl chloride with the isomeric aniline carboxylates to give similar products was reported by Crocker & Matthews (1911) while the application of picryl substituted azoanilines including the title compound, (I), in dyeing, was discussed by Beretta (1926). A number of structures of picryl-substituted anilines and other aromatic amines have been reported (e.g. Forlani et al., 1992; Braun et al., 2008; Pan et al., 2007; Smith et al., 2007).

In the title compound, (I), picryl-substitution of the aniline group of the 4-(phenyldiazenyl)aniline molecule has occurred. The molecular structure of (I) is shown Fig. 1. The diphenyldiazenyl ring system is non-planar [torsion angles C3—C4—N4—N41 and C51—C41—N41—N4: 175.4 (2) and -169.5 (2)°, respectively] as is the picrate to aniline ring system [torsion angles C2A—C1A—N1—C1 and C6—C1—N1—C1A: 152.5 (2) and 156.3 (3)° respectively]. Within the picrate moiety, one of the two ortho-related nitro groups is rotated out of the benzene plane [torsion angle C5A—C6A—N6A—O62A, 147.1 (2)°], while the other, which is associated with an intramolecular hydrogen bond [N1—H···O21A (Table 1)] is close to coplanar [C1A—C2A—N2A—O22A, -173.3 (2)°]. The para-related nitro group is also essentially coplanar with the ring [C3A—C4A—N4A—O42A, 172.0 (2)°]. There is one short intermolecular non-bonding nitro group interaction [O41A···O42Ai, 2.860 (3) Å: symmetry code (i) -x + 1, y - 1/2, -z]. In addition, there are weak π···π ring interactions with a centroid to centroid distance 3.7744 (16) Å.

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 4-(phenyldiazenyl)aniline (aniline yellow) and 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave orange-red prisms of (I) from which a specimen was cleaved for the X-ray analysis.

Refinement

All H-atoms were included in the refinement in calculated positions and were allowed to ride with C—H = 0.93 Å or N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). In the absence of significant anomalous dispersion effects Friedel pairs were merged for the final cycles of refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. The intramolecular hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level.

Crystal data

C18H12N6O6 F(000) = 420
Mr = 408.34 Dx = 1.491 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2105 reflections
a = 7.4255 (4) Å θ = 3.5–28.5°
b = 7.6613 (4) Å µ = 0.12 mm1
c = 16.1510 (9) Å T = 200 K
β = 98.160 (5)° Plate, orange-red
V = 909.51 (9) Å3 0.30 × 0.30 × 0.15 mm
Z = 2

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2297 independent reflections
Radiation source: Enhance (Mo) X-ray source 1407 reflections with I > 2σ(I)
graphite Rint = 0.036
Detector resolution: 16.077 pixels mm-1 θmax = 28.5°, θmin = 3.5°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −10→10
Tmin = 0.920, Tmax = 0.990 l = −21→21
6768 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters not refined
S = 0.86 w = 1/[σ2(Fo2) + (0.021P)2] where P = (Fo2 + 2Fc2)/3
2297 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.15 e Å3
1 restraint Δρmin = −0.14 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O21A 0.7894 (3) 0.0405 (2) 0.33042 (15) 0.0557 (8)
O22A 0.8395 (3) −0.0131 (3) 0.20499 (15) 0.0673 (10)
O41A 0.7046 (3) 0.3737 (3) −0.01934 (12) 0.0524 (8)
O42A 0.5573 (3) 0.6113 (3) −0.00428 (13) 0.0733 (10)
O61A 0.4815 (3) 0.8150 (3) 0.26498 (14) 0.0582 (9)
O62A 0.4238 (2) 0.6124 (3) 0.35215 (12) 0.0467 (7)
N1 0.6941 (3) 0.3543 (3) 0.36913 (14) 0.0379 (8)
N2A 0.7860 (3) 0.0827 (3) 0.25675 (17) 0.0438 (10)
N4 0.8515 (3) 0.7986 (3) 0.64591 (15) 0.0376 (8)
N4A 0.6334 (3) 0.4775 (3) 0.02299 (15) 0.0403 (9)
N6A 0.4931 (3) 0.6655 (3) 0.29240 (16) 0.0397 (9)
N41 0.7964 (3) 0.7460 (3) 0.71112 (15) 0.0388 (8)
C1 0.7256 (3) 0.4761 (4) 0.43607 (17) 0.0343 (10)
C1A 0.6660 (3) 0.3836 (3) 0.28559 (17) 0.0304 (9)
C2 0.8086 (3) 0.6339 (3) 0.42983 (17) 0.0367 (10)
C2A 0.7143 (3) 0.2547 (3) 0.22900 (18) 0.0323 (9)
C3 0.8466 (3) 0.7381 (4) 0.50001 (17) 0.0363 (10)
C3A 0.7034 (3) 0.2855 (3) 0.14441 (17) 0.0325 (10)
C4 0.8030 (3) 0.6843 (4) 0.57641 (18) 0.0357 (10)
C4A 0.6397 (3) 0.4442 (4) 0.11242 (17) 0.0304 (9)
C5 0.7209 (4) 0.5221 (4) 0.58222 (18) 0.0420 (11)
C5A 0.5793 (3) 0.5688 (3) 0.16261 (17) 0.0321 (10)
C6 0.6810 (4) 0.4184 (4) 0.51302 (18) 0.0429 (11)
C6A 0.5887 (3) 0.5373 (3) 0.24652 (17) 0.0301 (9)
C11 0.9043 (4) 1.0521 (4) 0.92620 (19) 0.0475 (11)
C21 0.9363 (3) 1.1240 (4) 0.8506 (2) 0.0455 (11)
C31 0.9046 (3) 1.0274 (4) 0.77855 (17) 0.0361 (10)
C41 0.8401 (3) 0.8580 (3) 0.78142 (17) 0.0313 (10)
C51 0.8078 (3) 0.7876 (4) 0.85652 (18) 0.0391 (10)
C61 0.8423 (4) 0.8851 (4) 0.92962 (19) 0.0437 (11)
H1 0.69280 0.24650 0.38380 0.0450*
H2 0.83930 0.67080 0.37880 0.0440*
H3 0.90220 0.84590 0.49580 0.0430*
H3A 0.73870 0.19990 0.10920 0.0390*
H5 0.69290 0.48390 0.63360 0.0500*
H5A 0.53250 0.67380 0.14000 0.0390*
H6 0.62490 0.31080 0.51700 0.0510*
H11 0.92550 1.11840 0.97480 0.0570*
H21 0.97920 1.23780 0.84890 0.0540*
H31 0.92630 1.07520 0.72800 0.0430*
H51 0.76280 0.67450 0.85820 0.0470*
H61 0.82320 0.83690 0.98050 0.0520*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O21A 0.0839 (16) 0.0368 (12) 0.0427 (14) −0.0079 (11) −0.0033 (12) 0.0064 (11)
O22A 0.0965 (18) 0.0423 (14) 0.0679 (18) 0.0221 (13) 0.0283 (14) −0.0003 (12)
O41A 0.0661 (14) 0.0584 (14) 0.0361 (14) −0.0002 (12) 0.0191 (11) −0.0091 (11)
O42A 0.0923 (18) 0.0854 (17) 0.0449 (15) 0.0435 (16) 0.0196 (13) 0.0222 (14)
O61A 0.0700 (16) 0.0370 (14) 0.0701 (18) 0.0057 (11) 0.0187 (12) −0.0105 (11)
O62A 0.0385 (11) 0.0683 (14) 0.0349 (13) −0.0036 (11) 0.0107 (10) −0.0101 (11)
N1 0.0475 (14) 0.0359 (13) 0.0305 (15) −0.0133 (12) 0.0065 (12) 0.0030 (12)
N2A 0.0492 (16) 0.0339 (16) 0.0470 (19) −0.0023 (12) 0.0022 (14) 0.0000 (14)
N4 0.0358 (13) 0.0478 (15) 0.0286 (16) −0.0031 (12) 0.0022 (11) −0.0014 (12)
N4A 0.0354 (14) 0.0543 (17) 0.0318 (16) 0.0028 (13) 0.0067 (12) 0.0020 (14)
N6A 0.0276 (13) 0.0496 (18) 0.0414 (17) −0.0032 (12) 0.0031 (12) −0.0160 (14)
N41 0.0429 (14) 0.0470 (15) 0.0268 (15) −0.0013 (13) 0.0058 (11) −0.0008 (13)
C1 0.0327 (16) 0.0389 (18) 0.0303 (18) −0.0076 (14) 0.0014 (13) −0.0048 (15)
C1A 0.0253 (15) 0.0353 (16) 0.0302 (18) −0.0072 (13) 0.0028 (13) −0.0062 (14)
C2 0.0347 (15) 0.0505 (19) 0.0246 (17) −0.0113 (14) 0.0031 (12) 0.0061 (15)
C2A 0.0312 (15) 0.0283 (15) 0.0365 (18) −0.0030 (13) 0.0019 (13) −0.0032 (14)
C3 0.0359 (15) 0.0401 (17) 0.0318 (19) −0.0123 (14) 0.0012 (13) −0.0004 (15)
C3A 0.0278 (15) 0.0359 (17) 0.0343 (18) −0.0073 (13) 0.0057 (13) −0.0111 (14)
C4 0.0337 (16) 0.0433 (18) 0.0280 (18) −0.0039 (14) −0.0027 (13) 0.0004 (15)
C4A 0.0273 (14) 0.0397 (17) 0.0244 (16) −0.0027 (13) 0.0039 (12) −0.0024 (14)
C5 0.0560 (19) 0.0454 (19) 0.0251 (18) −0.0117 (16) 0.0073 (14) 0.0015 (14)
C5A 0.0227 (14) 0.0357 (17) 0.0370 (19) −0.0007 (13) 0.0010 (13) 0.0007 (14)
C6 0.0527 (18) 0.0401 (18) 0.0359 (19) −0.0138 (14) 0.0065 (15) 0.0029 (14)
C6A 0.0229 (13) 0.0359 (16) 0.0323 (18) −0.0024 (13) 0.0063 (12) −0.0076 (14)
C11 0.0380 (17) 0.063 (2) 0.040 (2) 0.0134 (17) 0.0005 (15) −0.0199 (17)
C21 0.0331 (17) 0.0445 (18) 0.057 (2) −0.0013 (15) 0.0001 (15) −0.0113 (17)
C31 0.0280 (15) 0.0444 (18) 0.035 (2) 0.0026 (14) 0.0014 (14) 0.0023 (15)
C41 0.0304 (15) 0.0346 (17) 0.0277 (18) 0.0030 (14) −0.0004 (13) −0.0009 (14)
C51 0.0387 (16) 0.0432 (19) 0.0345 (19) 0.0078 (14) 0.0018 (14) −0.0046 (15)
C61 0.0434 (17) 0.053 (2) 0.0338 (19) 0.0094 (16) 0.0025 (14) −0.0003 (17)

Geometric parameters (Å, °)

O21A—N2A 1.230 (4) C3A—C4A 1.378 (4)
O22A—N2A 1.221 (3) C4—C5 1.393 (4)
O41A—N4A 1.217 (3) C4A—C5A 1.369 (4)
O42A—N4A 1.222 (3) C5—C6 1.369 (4)
O61A—N6A 1.227 (3) C5A—C6A 1.369 (4)
O62A—N6A 1.226 (3) C11—C61 1.364 (4)
N1—C1 1.422 (4) C11—C21 1.390 (4)
N1—C1A 1.354 (4) C21—C31 1.371 (4)
N2A—C2A 1.467 (3) C31—C41 1.386 (4)
N4—N41 1.250 (3) C41—C51 1.379 (4)
N4—C4 1.429 (4) C51—C61 1.390 (4)
N4A—C4A 1.461 (4) C2—H2 0.9300
N6A—C6A 1.472 (3) C3—H3 0.9300
N41—C41 1.423 (3) C3A—H3A 0.9300
N1—H1 0.8600 C5—H5 0.9300
C1—C6 1.402 (4) C5A—H5A 0.9300
C1—C2 1.367 (4) C6—H6 0.9300
C1A—C2A 1.426 (4) C11—H11 0.9300
C1A—C6A 1.418 (3) C21—H21 0.9300
C2—C3 1.382 (4) C31—H31 0.9300
C2A—C3A 1.378 (4) C51—H51 0.9300
C3—C4 1.382 (4) C61—H61 0.9300
C1—N1—C1A 129.4 (2) C1—C6—C5 119.3 (3)
O21A—N2A—O22A 122.7 (2) N6A—C6A—C1A 121.6 (2)
O21A—N2A—C2A 119.2 (2) N6A—C6A—C5A 114.9 (2)
O22A—N2A—C2A 118.0 (3) C1A—C6A—C5A 123.2 (2)
N41—N4—C4 112.9 (2) C21—C11—C61 120.5 (3)
O41A—N4A—O42A 124.1 (2) C11—C21—C31 120.1 (3)
O41A—N4A—C4A 119.1 (2) C21—C31—C41 119.7 (3)
O42A—N4A—C4A 116.8 (2) N41—C41—C51 114.7 (2)
O61A—N6A—O62A 125.3 (2) N41—C41—C31 125.3 (2)
O61A—N6A—C6A 117.1 (2) C31—C41—C51 120.0 (3)
O62A—N6A—C6A 117.5 (2) C41—C51—C61 120.2 (3)
N4—N41—C41 114.4 (2) C11—C61—C51 119.5 (3)
C1—N1—H1 115.00 C1—C2—H2 120.00
C1A—N1—H1 115.00 C3—C2—H2 120.00
N1—C1—C2 123.5 (2) C2—C3—H3 120.00
C2—C1—C6 120.6 (3) C4—C3—H3 120.00
N1—C1—C6 115.7 (3) C2A—C3A—H3A 120.00
C2A—C1A—C6A 114.4 (2) C4A—C3A—H3A 120.00
N1—C1A—C6A 125.2 (2) C4—C5—H5 120.00
N1—C1A—C2A 120.4 (2) C6—C5—H5 120.00
C1—C2—C3 119.5 (2) C4A—C5A—H5A 120.00
C1A—C2A—C3A 122.2 (2) C6A—C5A—H5A 120.00
N2A—C2A—C1A 122.7 (2) C1—C6—H6 120.00
N2A—C2A—C3A 115.1 (2) C5—C6—H6 120.00
C2—C3—C4 120.9 (3) C21—C11—H11 120.00
C2A—C3A—C4A 119.5 (2) C61—C11—H11 120.00
N4—C4—C5 123.9 (3) C11—C21—H21 120.00
N4—C4—C3 117.0 (3) C31—C21—H21 120.00
C3—C4—C5 119.1 (3) C21—C31—H31 120.00
N4A—C4A—C5A 119.8 (2) C41—C31—H31 120.00
N4A—C4A—C3A 119.1 (2) C41—C51—H51 120.00
C3A—C4A—C5A 121.1 (3) C61—C51—H51 120.00
C4—C5—C6 120.6 (3) C11—C61—H61 120.00
C4A—C5A—C6A 119.3 (2) C51—C61—H61 120.00
C1A—N1—C1—C2 −29.4 (4) C6A—C1A—C2A—C3A 6.3 (3)
C1A—N1—C1—C6 156.3 (3) N1—C1A—C6A—N6A −14.0 (4)
C1—N1—C1A—C2A 152.5 (2) N1—C1A—C6A—C5A 173.3 (2)
C1—N1—C1A—C6A −27.7 (4) C2A—C1A—C6A—N6A 165.7 (2)
O21A—N2A—C2A—C1A 7.0 (4) C2A—C1A—C6A—C5A −7.0 (3)
O21A—N2A—C2A—C3A −175.4 (2) C1—C2—C3—C4 0.5 (4)
O22A—N2A—C2A—C1A −173.3 (2) N2A—C2A—C3A—C4A −179.3 (2)
O22A—N2A—C2A—C3A 4.3 (3) C1A—C2A—C3A—C4A −1.6 (4)
C4—N4—N41—C41 −179.2 (2) C2—C3—C4—N4 178.5 (2)
N41—N4—C4—C3 175.4 (2) C2—C3—C4—C5 0.5 (4)
N41—N4—C4—C5 −6.7 (4) C2A—C3A—C4A—N4A 178.3 (2)
O41A—N4A—C4A—C3A −8.9 (4) C2A—C3A—C4A—C5A −3.0 (4)
O41A—N4A—C4A—C5A 172.4 (2) N4—C4—C5—C6 −178.9 (3)
O42A—N4A—C4A—C3A 172.0 (2) C3—C4—C5—C6 −1.1 (4)
O42A—N4A—C4A—C5A −6.7 (3) N4A—C4A—C5A—C6A −178.9 (2)
O61A—N6A—C6A—C1A 157.5 (2) C3A—C4A—C5A—C6A 2.4 (4)
O61A—N6A—C6A—C5A −29.3 (3) C4—C5—C6—C1 0.8 (4)
O62A—N6A—C6A—C1A −26.1 (3) C4A—C5A—C6A—N6A −170.2 (2)
O62A—N6A—C6A—C5A 147.1 (2) C4A—C5A—C6A—C1A 2.9 (4)
N4—N41—C41—C31 12.6 (4) C61—C11—C21—C31 0.4 (4)
N4—N41—C41—C51 −169.5 (2) C21—C11—C61—C51 −1.2 (4)
N1—C1—C2—C3 −174.9 (2) C11—C21—C31—C41 0.2 (4)
C6—C1—C2—C3 −0.8 (4) C21—C31—C41—N41 178.0 (2)
N1—C1—C6—C5 174.7 (3) C21—C31—C41—C51 0.1 (4)
C2—C1—C6—C5 0.2 (4) N41—C41—C51—C61 −179.0 (2)
N1—C1A—C2A—N2A 3.5 (3) C31—C41—C51—C61 −1.0 (4)
N1—C1A—C2A—C3A −174.0 (2) C41—C51—C61—C11 1.5 (4)
C6A—C1A—C2A—N2A −176.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O21A 0.86 1.98 2.607 (3) 129
C3A—H3A···O22A 0.93 2.30 2.633 (3) 100
C5—H5···O61Ai 0.93 2.58 3.453 (4) 157
C11—H11···O41Aii 0.93 2.56 3.068 (4) 115
C21—H21···O22Aiii 0.93 2.56 3.425 (4) 155

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) x, y+1, z+1; (iii) −x+2, y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5220).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Beretta, A. (1926). Ann. Chim. Appl. 16, 211–216.
  3. Braun, D. E., Gelbrich, J., Jetti, R. K. R., Kahlenberg, X., Price, S. L. & Griesser, U. J. (2008). Cryst. Growth Des. 8, 1977–1989.
  4. Crocker, J. C. & Matthews, F. (1911). J. Chem. Soc. Trans. 99, 301–313.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Forlani, L., Battaglia, L. P., Corradi, A. B. & Sgarabotto, P. (1992). J. Crystallogr. Spectrosc. Res. 22, 705–712.
  7. Mahmoudkhani, A. H. & Langer, V. (2001). Acta Cryst. E57, o839–o841.
  8. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  9. Pan, W.-L., Huang, K.-L., Tang, W., Xu, Y.-Q. & Hu, C.-W. (2007). Chin. J. Chem. 25, 1451–1454.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Smith, G., Wermuth, U. D. & White, J. M. (2011). Acta Cryst. E67, o878. [DOI] [PMC free article] [PubMed]
  12. Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2009). Acta Cryst. C65, o543–o548. [DOI] [PubMed]
  13. Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4803. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101004X/lh5220sup1.cif

e-67-0o948-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101004X/lh5220Isup2.hkl

e-67-0o948-Isup2.hkl (110.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES