Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):m433–m434. doi: 10.1107/S1600536811008774

[N′-(5-Bromo-2-oxidobenzyl­idene-κO)-2-chloro­benzohydrazidato-κ2 N′,O](methanol-κO)(methano­lato-κO)oxido­vanadium(V)

Fu-Ming Wang a,*
PMCID: PMC3099792  PMID: 21753958

Abstract

The VV atom in the title complex, [V(C14H8BrClN2O2)(CH3O)O(CH3OH)], is six-coordinated by one phenolate O, one imine N and one enolic O atom of the hydrazone ligand, one oxide O atom, one methanol O atom and one methoxide O atom in a distorted octa­hedral geometry. The dihedral angle between the two benzene rings of the hydrazone ligand is 13.2 (3)°. The deviation of the V atom towards the oxide O atom from the plane defined by the three donor atoms of the hydrazone ligand and the meth­oxy O atom is 0.318 (2) Å. Bond lengths are comparable with those observed in similar oxidovanadium(V) complexes with hydrazone ligands. In the crystal, pairs of mol­ecules are linked through inter­molecular O—H⋯N hydrogen bonds, forming dimers.

Related literature

For background to hydrazone compounds and their complexes, see: Seena et al. (2008); Bastos et al. (2008); Sarkar & Pal (2008); Nica et al. (2007). For similar oxidovanadium(V) complexes, see: Kurup et al. (2010); Rajak et al. (2000); Grüning et al. (1999); Mondal et al. (2009).graphic file with name e-67-0m433-scheme1.jpg

Experimental

Crystal data

  • [V(C14H8BrClN2O2)(CH3O)O(CH4O)]

  • M r = 481.60

  • Monoclinic, Inline graphic

  • a = 28.09 (2) Å

  • b = 7.992 (6) Å

  • c = 20.163 (14) Å

  • β = 121.854 (7)°

  • V = 3844 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.491, T max = 0.569

  • 9750 measured reflections

  • 4081 independent reflections

  • 2266 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.103

  • S = 1.02

  • 4081 reflections

  • 240 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008774/qm2003sup1.cif

e-67-0m433-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008774/qm2003Isup2.hkl

e-67-0m433-Isup2.hkl (200.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

V1—O4 1.582 (3)
V1—O3 1.765 (3)
V1—O1 1.859 (3)
V1—O2 1.957 (3)
V1—N1 2.134 (3)
V1—O5 2.403 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2i 0.85 (4) 2.06 (4) 2.906 (4) 178 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by Dezhou University, People’s Republic of China.

supplementary crystallographic information

Comment

Hydrazone compounds and their oxovanadium complexes have received much attention due to their structures and biological properties (Seena et al., 2008; Bastos et al., 2008; Sarkar & Pal, 2008; Nica et al., 2007). In this paper, the title new oxovanadium(V) complex with a hydrazone ligand is reported.

The VV atom in the title complex, Fig. 1, is six-coordinated by one phenolic O, one imine N, and one enolic O atoms of the hydrazone ligand, by one oxo O atom, and by two O atoms respectively from a methanol molecule and a methoxide ligand, forming a distorted octahedral geometry. The dihedral angle between the two benzene rings of the hydrazone ligand is 13.2 (3)°. The deviation of the V atom from the plane defined by the three donor atoms of the hydrazone ligand and the methoxy O atom towards the oxo O atom is 0.318 (2) Å. The coordinate bond lengths and angles (Table 1) are comparable with those observed in similar oxovanadium(V) complexes (Kurup et al., 2010; Rajak et al., 2000; Grüning et al., 1999; Mondal et al., 2009). In the crystal structure, adjacent two molecules are linked through intermolecular O—H···N hydrogen bonds (Table 2), to form a dimer, as shown in Fig. 2.

Experimental

5-Bromosalicylaldehyde (1 mmol, 0.20 g), 2-chlorobenzohydrazide 1 mmol, 0.17 g), and VO(acac)2 (1 mmol, 0.26 g) were mixed in methanol (30 ml). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown block-like single crystals, suitable for X-ray diffraction, were formed after slow evaporation of the solution in air for a few days.

Refinement

H5 atom was located from a difference Fourier map and refined isotropically. The O5—H5 distance is restrained to 0.85 (1) Å. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title complex, viewed along the b axis.

Crystal data

[V(C14H8BrClN2O2)(CH3O)O(CH4O)] F(000) = 1920
Mr = 481.60 Dx = 1.664 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 28.09 (2) Å Cell parameters from 1798 reflections
b = 7.992 (6) Å θ = 2.3–25.0°
c = 20.163 (14) Å µ = 2.76 mm1
β = 121.854 (7)° T = 298 K
V = 3844 (5) Å3 Block, brown
Z = 8 0.30 × 0.27 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer 4081 independent reflections
Radiation source: fine-focus sealed tube 2266 reflections with I > 2σ(I)
graphite Rint = 0.056
ω scans θmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −28→35
Tmin = 0.491, Tmax = 0.569 k = −9→9
9750 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3
4081 reflections (Δ/σ)max < 0.001
240 parameters Δρmax = 0.45 e Å3
1 restraint Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
V1 0.33992 (3) 0.48966 (10) 0.15964 (4) 0.0355 (2)
Br1 0.05406 (2) 0.13036 (7) 0.00218 (3) 0.05439 (19)
Cl1 0.44356 (6) 0.87745 (17) 0.12452 (7) 0.0663 (4)
H5 0.2799 (16) 0.809 (6) 0.1145 (18) 0.099*
N1 0.27232 (13) 0.5095 (4) 0.04108 (16) 0.0281 (8)
N2 0.28364 (14) 0.5947 (4) −0.01011 (18) 0.0306 (8)
O1 0.28365 (12) 0.4401 (4) 0.17896 (15) 0.0428 (8)
O2 0.37010 (11) 0.6037 (3) 0.10369 (15) 0.0392 (8)
O3 0.39495 (11) 0.5587 (4) 0.25184 (14) 0.0418 (8)
O4 0.35806 (13) 0.3060 (4) 0.15302 (15) 0.0519 (9)
O5 0.30672 (12) 0.7684 (4) 0.15650 (16) 0.0441 (8)
C1 0.20329 (17) 0.3624 (5) 0.0557 (2) 0.0298 (10)
C2 0.23468 (17) 0.3619 (5) 0.1384 (2) 0.0336 (10)
C3 0.21228 (18) 0.2811 (6) 0.1779 (2) 0.0425 (12)
H3 0.2332 0.2758 0.2321 0.051*
C4 0.15989 (18) 0.2100 (6) 0.1374 (2) 0.0422 (12)
H4 0.1456 0.1574 0.1644 0.051*
C5 0.12819 (16) 0.2159 (5) 0.0566 (2) 0.0351 (11)
C6 0.14949 (17) 0.2896 (5) 0.0161 (2) 0.0346 (11)
H6 0.1281 0.2914 −0.0382 0.042*
C7 0.22241 (18) 0.4472 (5) 0.0110 (2) 0.0331 (10)
H7 0.1975 0.4580 −0.0426 0.040*
C8 0.33695 (17) 0.6358 (5) 0.0297 (2) 0.0309 (10)
C9 0.36154 (17) 0.7211 (5) −0.0115 (2) 0.0310 (10)
C10 0.40956 (18) 0.8227 (5) 0.0260 (2) 0.0393 (11)
C11 0.43223 (19) 0.8885 (6) −0.0144 (3) 0.0482 (13)
H11 0.4648 0.9521 0.0118 0.058*
C12 0.4068 (2) 0.8607 (6) −0.0937 (3) 0.0546 (14)
H12 0.4218 0.9076 −0.1210 0.065*
C13 0.3589 (2) 0.7628 (6) −0.1326 (3) 0.0530 (13)
H13 0.3420 0.7419 −0.1857 0.064*
C14 0.33694 (17) 0.6971 (5) −0.0914 (2) 0.0393 (11)
H14 0.3043 0.6340 −0.1180 0.047*
C15 0.44932 (19) 0.4960 (8) 0.3020 (3) 0.0801 (19)
H15A 0.4502 0.3791 0.2918 0.120*
H15B 0.4597 0.5109 0.3552 0.120*
H15C 0.4752 0.5552 0.2932 0.120*
C16 0.3407 (2) 0.9086 (6) 0.1983 (3) 0.0563 (14)
H16A 0.3700 0.8736 0.2494 0.084*
H16B 0.3181 0.9920 0.2030 0.084*
H16C 0.3569 0.9547 0.1706 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
V1 0.0370 (5) 0.0392 (5) 0.0266 (4) −0.0050 (4) 0.0141 (4) 0.0019 (4)
Br1 0.0345 (3) 0.0605 (4) 0.0636 (3) −0.0119 (3) 0.0227 (3) −0.0005 (3)
Cl1 0.0644 (9) 0.0763 (10) 0.0548 (8) −0.0275 (8) 0.0292 (7) −0.0141 (7)
N1 0.032 (2) 0.028 (2) 0.0254 (17) −0.0033 (17) 0.0157 (16) 0.0003 (16)
N2 0.033 (2) 0.032 (2) 0.0292 (18) −0.0039 (17) 0.0180 (17) 0.0002 (16)
O1 0.0400 (19) 0.058 (2) 0.0281 (15) −0.0200 (16) 0.0165 (15) −0.0009 (15)
O2 0.0330 (17) 0.049 (2) 0.0303 (16) −0.0054 (15) 0.0130 (14) 0.0083 (14)
O3 0.0318 (18) 0.055 (2) 0.0286 (16) 0.0001 (16) 0.0094 (15) 0.0063 (15)
O4 0.067 (2) 0.042 (2) 0.0389 (18) 0.0046 (18) 0.0226 (17) 0.0038 (15)
O5 0.041 (2) 0.038 (2) 0.0410 (18) −0.0035 (17) 0.0129 (15) −0.0027 (16)
C1 0.033 (2) 0.028 (3) 0.028 (2) −0.001 (2) 0.015 (2) 0.0011 (19)
C2 0.033 (3) 0.034 (3) 0.034 (2) −0.005 (2) 0.018 (2) 0.000 (2)
C3 0.047 (3) 0.053 (3) 0.032 (2) −0.012 (3) 0.024 (2) −0.003 (2)
C4 0.045 (3) 0.045 (3) 0.047 (3) −0.010 (2) 0.031 (3) 0.001 (2)
C5 0.031 (3) 0.036 (3) 0.038 (2) −0.002 (2) 0.018 (2) −0.001 (2)
C6 0.037 (3) 0.033 (3) 0.028 (2) 0.000 (2) 0.013 (2) 0.000 (2)
C7 0.034 (3) 0.037 (3) 0.025 (2) −0.001 (2) 0.013 (2) 0.000 (2)
C8 0.035 (3) 0.031 (3) 0.033 (2) 0.001 (2) 0.022 (2) 0.002 (2)
C9 0.033 (2) 0.025 (3) 0.037 (2) 0.003 (2) 0.019 (2) 0.002 (2)
C10 0.040 (3) 0.034 (3) 0.043 (3) 0.005 (2) 0.021 (2) 0.004 (2)
C11 0.038 (3) 0.048 (3) 0.064 (3) −0.009 (2) 0.031 (3) 0.000 (3)
C12 0.060 (3) 0.057 (4) 0.070 (4) 0.002 (3) 0.050 (3) 0.015 (3)
C13 0.054 (3) 0.069 (4) 0.046 (3) 0.001 (3) 0.033 (3) 0.009 (3)
C14 0.032 (3) 0.048 (3) 0.039 (3) 0.005 (2) 0.020 (2) 0.004 (2)
C15 0.039 (3) 0.116 (5) 0.058 (3) 0.015 (4) 0.007 (3) 0.007 (4)
C16 0.066 (4) 0.053 (4) 0.043 (3) −0.013 (3) 0.024 (3) −0.007 (3)

Geometric parameters (Å, °)

V1—O4 1.582 (3) C4—C5 1.384 (5)
V1—O3 1.765 (3) C4—H4 0.9300
V1—O1 1.859 (3) C5—C6 1.374 (5)
V1—O2 1.957 (3) C6—H6 0.9300
V1—N1 2.134 (3) C7—H7 0.9300
V1—O5 2.403 (4) C8—C9 1.496 (5)
Br1—C5 1.896 (4) C9—C14 1.390 (5)
Cl1—C10 1.746 (4) C9—C10 1.405 (6)
N1—C7 1.298 (5) C10—C11 1.375 (6)
N1—N2 1.406 (4) C11—C12 1.383 (6)
N2—C8 1.314 (5) C11—H11 0.9300
O1—C2 1.328 (5) C12—C13 1.386 (6)
O2—C8 1.301 (4) C12—H12 0.9300
O3—C15 1.406 (5) C13—C14 1.375 (5)
O5—C16 1.424 (5) C13—H13 0.9300
O5—H5 0.85 (4) C14—H14 0.9300
C1—C6 1.409 (5) C15—H15A 0.9600
C1—C2 1.418 (5) C15—H15B 0.9600
C1—C7 1.439 (5) C15—H15C 0.9600
C2—C3 1.404 (5) C16—H16A 0.9600
C3—C4 1.374 (5) C16—H16B 0.9600
C3—H3 0.9300 C16—H16C 0.9600
O4—V1—O3 103.70 (15) C5—C6—C1 120.9 (4)
O4—V1—O1 99.61 (15) C5—C6—H6 119.6
O3—V1—O1 102.39 (13) C1—C6—H6 119.6
O4—V1—O2 97.29 (14) N1—C7—C1 123.8 (4)
O3—V1—O2 93.25 (13) N1—C7—H7 118.1
O1—V1—O2 153.46 (12) C1—C7—H7 118.1
O4—V1—N1 96.33 (13) O2—C8—N2 123.2 (3)
O3—V1—N1 157.41 (14) O2—C8—C9 117.8 (4)
O1—V1—N1 84.17 (13) N2—C8—C9 119.1 (4)
O2—V1—N1 73.72 (13) C14—C9—C10 116.9 (4)
O4—V1—O5 174.59 (12) C14—C9—C8 119.2 (4)
O3—V1—O5 81.36 (12) C10—C9—C8 123.9 (4)
O1—V1—O5 80.92 (13) C11—C10—C9 121.1 (4)
O2—V1—O5 80.39 (12) C11—C10—Cl1 115.6 (4)
N1—V1—O5 78.35 (11) C9—C10—Cl1 123.4 (3)
C7—N1—N2 116.7 (3) C10—C11—C12 120.4 (4)
C7—N1—V1 126.8 (3) C10—C11—H11 119.8
N2—N1—V1 116.5 (2) C12—C11—H11 119.8
C8—N2—N1 107.4 (3) C11—C12—C13 119.9 (4)
C2—O1—V1 133.7 (3) C11—C12—H12 120.0
C8—O2—V1 119.2 (2) C13—C12—H12 120.0
C15—O3—V1 131.4 (3) C14—C13—C12 119.0 (4)
C16—O5—V1 125.8 (3) C14—C13—H13 120.5
C16—O5—H5 105 (4) C12—C13—H13 120.5
V1—O5—H5 121 (4) C13—C14—C9 122.7 (4)
C6—C1—C2 118.7 (4) C13—C14—H14 118.7
C6—C1—C7 118.8 (3) C9—C14—H14 118.7
C2—C1—C7 122.2 (4) O3—C15—H15A 109.5
O1—C2—C3 119.7 (4) O3—C15—H15B 109.5
O1—C2—C1 121.4 (3) H15A—C15—H15B 109.5
C3—C2—C1 118.8 (4) O3—C15—H15C 109.5
C4—C3—C2 120.9 (4) H15A—C15—H15C 109.5
C4—C3—H3 119.6 H15B—C15—H15C 109.5
C2—C3—H3 119.6 O5—C16—H16A 109.5
C3—C4—C5 120.5 (4) O5—C16—H16B 109.5
C3—C4—H4 119.8 H16A—C16—H16B 109.5
C5—C4—H4 119.8 O5—C16—H16C 109.5
C6—C5—C4 120.2 (4) H16A—C16—H16C 109.5
C6—C5—Br1 120.0 (3) H16B—C16—H16C 109.5
C4—C5—Br1 119.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···N2i 0.85 (4) 2.06 (4) 2.906 (4) 178 (5)

Symmetry codes: (i) −x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2003).

References

  1. Bastos, A. M. B., da Silva, J. G., Maia, P. I. da S., Deflon, V. M., Batista, A. A., Ferreira, A. V. M., Botion, L. M., Niquet, E. & Beraldo, H. (2008). Polyhedron, 27, 1787–1794.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Grüning, C., Schmidt, H. & Rehder, D. (1999). Inorg. Chem. Commun. 2, 57–59.
  4. Kurup, M. R. P., Seena, E. B. & Kuriakose, M. (2010). Struct. Chem. 21, 599–605.
  5. Mondal, B., Drew, M. G. B. & Ghosh, T. (2009). Inorg. Chim. Acta, 362, 3303–3308.
  6. Nica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743–1752.
  7. Rajak, K. K., Mondal, S. & Rath, S. P. (2000). Polyhedron, 19, 931–936.
  8. Sarkar, A. & Pal, S. (2008). Inorg. Chim. Acta, 361, 2296–2304.
  9. Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. R. P. (2008). Polyhedron, 27, 1455–1462.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008774/qm2003sup1.cif

e-67-0m433-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008774/qm2003Isup2.hkl

e-67-0m433-Isup2.hkl (200.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES