Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):o893. doi: 10.1107/S1600536811008890

2-{[(Biphenyl-2-yl)diazen­yl]methyl­idene}-1,3,3-trimethyl­indoline

Graeme J Gainsford a,*, Mohamed Ashraf a, Andrew J Kay a
PMCID: PMC3099795  PMID: 21754168

Abstract

The title mol­ecule, C24H23N3, shows some delocalization of charge based on the small [8.0 (2)°] angle between the indolin-2-yl­idene ring system and the link methyl­diazene C2N2 atom plane. A further twist of 17.2 (3)° is subtended between the C2N2 plane and its attached benzene ring. The dihedral angle between the biphenyl rings is 47.96(14)°. In the crystal, the mol­ecules pack via C—H⋯π attractive inter­actions.

Related literature

For applications of azo compounds, see: Möhlmann & van der Vorst (1989); Zollinger (1987). For related compounds, see Jones (2004); Jones & Chrapkowski (2004); Gainsford et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-0o893-scheme1.jpg

Experimental

Crystal data

  • C24H23N3

  • M r = 353.45

  • Orthorhombic, Inline graphic

  • a = 14.2968 (17) Å

  • b = 8.2407 (10) Å

  • c = 16.2671 (17) Å

  • V = 1916.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 116 K

  • 0.70 × 0.20 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan [Blessing (1995) and SADABS (Bruker, 2005)] T min = 0.640, T max = 0.746

  • 34258 measured reflections

  • 1783 independent reflections

  • 1764 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.086

  • S = 1.23

  • 1783 reflections

  • 247 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008890/ez2238sup1.cif

e-67-0o893-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008890/ez2238Isup2.hkl

e-67-0o893-Isup2.hkl (87.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C19–C24, C4–C9 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1CCg1i 0.98 2.86 3.582 (3) 131
C11—H11BCg3ii 0.98 2.74 3.721 (3) 179
C22—H22⋯Cg2iii 0.95 2.76 3.645 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance with the data collection.

supplementary crystallographic information

Comment

Azo compounds are integral to a number of fields of organic chemistry. While they played a key part in the development of the dye industry (Zollinger, 1987) they are also finding application as the enabling materials for a range of fields including nonlinear optics, photochromism and holographic recording. Dyes based on azobenzene typically exhibit high extinction coefficients and their absorption maxima can usually be tailored to lie anywhere in the visible region via appropriate substitution onto the phenyl rings. Furthermore due to their geometrically rigid structures and large aspect ratios, azobenzene compounds are ideal as mesogens (Möhlmann & van der Vorst, 1989).

Recently, we have become interested in developing photoswitchable molecules in order to alter the refractive index of a given material via photo-induced rather than electrically induced means (as occurs in nonlinear optical materials). As part of this we have been exploring how the placement of different substituents (e.g. donors, acceptors or neutral) on the backbone of various azo dyes affects the speed and reversibility of the photo- and thermal isomerization processes. Included in these studies have been a suite of compounds containing an indoline donor, an azo linker and a variety of substituents attached to the terminal nitrogen atom of the azo moiety. The molecules are easily prepared via diazotization of the corresponding aryl amine of the terminal substituent and coupling of the resultant diazonium salt with Fisher's base. The reaction is exemplified in Fig. 1 using 2-aminobiphenyl, 1, as the aromatic amine and which yielded the title compound, 3, in 80% yield.

Compound REFCODES below are from the Cambridge Structural Database (Version 5.31, with Aug 2010 updates; Allen, 2002). The asymmetric unit contents and labels of 3 are shown in Fig. 2. The bond lengths and angles, with the exception of those involving atom C12, are essentially identical with those reported by Jones in 2004 [EZUCUX, EZUDAE (Jones, 2004)) and YADTIH (Jones & Chrapkowski (2004)]. In these latter three compounds, where only a phenyl (or para-substituted phenyl) ring was bound to N3, an additional indol-2-ylidene ring was bonded to C12 rather than the hydrogen here (H12). The mean C12—C2 and C12—N2 distances for the three structures were 1.386 (5) and 1.395 (2) Å compared with 1.361 (4) and 1.362 (4) Å here. There are smaller consistent, but barely significant, differences with the N1—C9 and N1—C2 average bond lengths being longer (0.11 (5) Å) and shorter (0.08 (5) °) than found here. These differences can be attributed to extended charge delocalization through the N1—C2—C12—N2 chain that is not observed in the three reference cationic structures.

There is minor buckling beteween the 5- & 6-membered rings in the indol-2-ylidene ring of 1.09 (14) ° compared with 0.46 (14) ° in EZUDAE. The interplanar angles confirm the consistent twist along the delocalization plane: 8.0 (2) ° between the indol-2-ylidene (N1, C2–C9) and the C2,C12,N2,N3 planes, and a further 17.2 (3) ° angle subtended between the latter and the phenyl ring (C14–C18). The biphenyl rings are at 47.96 (14) ° to each other. This is another point of difference with the related compounds, where the "out of plane" indol-2-ylidene ring bound to C12 is at ~80 ° to the mean plane through the phenyl ring bound to N3.

The molecules are held in the lattice by a concerted set of C–H···π interactions shown in Table 1 and Fig. 3. Entry 2 in Table 1 is included because the second methyl hydrogen on C1 (H1A) interacts with atoms C14 & C15 in an adjacent (Cg3) ring. We note that the acidic proton H12 is not positioned to interact with adjacent N2 or N3 acceptors as observed in related compounds with cyano N atoms (e.g. structure (II) in Gainsford et al., 2008). This packing highlights the main difference between this structure and the reference compounds which have extensive hydrogen bonding (C–H···O) to the perchlorate anion and no significant C–H···π interactions.

Experimental

To conc. sulfuric acid (4 ml) was added 2-aminobiphenyl 1 (5 mmol) and the reaction was stirred and cooled to 273–278 K. A solution of sodium nitrite (380 mg, 5.5 mol) in 10 ml of water was added slowly and the reaction stirred at 273–278 K for 30 min. To this mixture, was added a solution of Fisher's base, 2, (865 mg, 5 mmol) in 20 ml of glacial acetic acid and the reaction was then stirred for a further 2 h at 273–278 K. The reaction mixture was then poured into water and neutralized with aqueous sodium carbonate. The resulting precipitate was collected by filtration, washed with water and dried over sodium sulfate. Recrystallization (ethanol) gave the title compound 3 as a deep red solid; Yield: 80%. Crystals were prepared by slow evaporation in methanol. m.p. 417.8–419.3 K. 1H NMR (DMSO-d6, 500 MHz): 7.58 (d, 1H, J = 10 Hz), 7.46–7.40 (m, 5H), 7.35–7.31 (m, 2H), 7.29–7.25 (m, 2H), 7.22 (s, 1H), 7.09 (d, 1H, J = 10 Hz), 7.02 (t, 2H), 3.31(s, 3H), 1.71(s, 6H). 13C NMR (DMSO-d6, 125 MHz): 28.66, 29.58, 108.23, 115.62, 121.61, 121.87, 126.58, 126.99, 127.54, 127.81, 128.05, 130.30, 131.53, 137.72, 139.35, 139.70, 144.08, 150.79, 165.97. Mass spec: found: M+ 354.1972; 354.1970 (calc); Δ = 0.6 p.p.m..

Refinement

In the absence of significant anomalous scattering, the values of the Flack parameter were indeterminate. Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. Two reflections affected by the backstop were omitted from the refinements (using OMIT) and three others were deemed to be outliers. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary), 0.99 (methylene) or 0.95 (phenyl) Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Reaction scheme showing the synthetic procedure for obtaining the title compound.

Fig. 2.

Fig. 2.

Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level. H atoms not shown for clarity.

Fig. 3.

Fig. 3.

Partial packing diagram of the unit cell showing key interactions (see text and Table 1) [Macrae et al., 2008]. Only significant H atoms are shown as balls for clarity. Symmetry (i) x - 1/2, 2 - y, z (ii) 1/2 - x, 1 - y, z (iii) x, y - 1, z (iv) 1 - x, 1 - y, 1/2 + z (v) x - 1/2, 1 - y, z. Ring centres shown as red balls are Cg1 (C19–C24), Cg2 (C4–C9) and Cg3 (C13–C18).

Crystal data

C24H23N3 F(000) = 752
Mr = 353.45 Dx = 1.225 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 9914 reflections
a = 14.2968 (17) Å θ = 2.5–27.3°
b = 8.2407 (10) Å µ = 0.07 mm1
c = 16.2671 (17) Å T = 116 K
V = 1916.5 (4) Å3 Needle, red
Z = 4 0.70 × 0.20 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 1783 independent reflections
graphite 1764 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1 Rint = 0.041
φ and ω scans θmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan [Blessing (1995) and SADABS (Bruker, 2005)] h = −17→17
Tmin = 0.640, Tmax = 0.746 k = −9→9
34258 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.7948P] where P = (Fo2 + 2Fc2)/3
1783 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.78152 (16) 1.0321 (3) 0.45002 (13) 0.0248 (5)
N2 0.64108 (16) 0.6649 (3) 0.43989 (14) 0.0238 (5)
N3 0.58268 (16) 0.6112 (3) 0.38682 (14) 0.0261 (5)
C1 0.7761 (2) 1.1095 (4) 0.36962 (19) 0.0333 (7)
H1A 0.7164 1.1669 0.3645 0.050*
H1B 0.7806 1.0267 0.3266 0.050*
H1C 0.8277 1.1869 0.3637 0.050*
C2 0.73892 (18) 0.8894 (3) 0.47008 (16) 0.0216 (6)
C3 0.76949 (18) 0.8406 (3) 0.55730 (17) 0.0235 (6)
C4 0.83106 (18) 0.9831 (3) 0.58035 (17) 0.0250 (6)
C5 0.8798 (2) 1.0170 (4) 0.6516 (2) 0.0376 (7)
H5 0.8786 0.9433 0.6965 0.045*
C6 0.9309 (2) 1.1616 (4) 0.6568 (2) 0.0444 (9)
H6 0.9645 1.1863 0.7056 0.053*
C7 0.9329 (2) 1.2686 (4) 0.5914 (2) 0.0421 (8)
H7 0.9679 1.3663 0.5962 0.050*
C8 0.8851 (2) 1.2369 (4) 0.5189 (2) 0.0349 (7)
H8 0.8866 1.3101 0.4738 0.042*
C9 0.83496 (19) 1.0929 (3) 0.51568 (18) 0.0258 (6)
C10 0.6853 (2) 0.8259 (4) 0.61544 (18) 0.0321 (7)
H10A 0.6504 0.9283 0.6157 0.048*
H10B 0.7073 0.8019 0.6712 0.048*
H10C 0.6443 0.7381 0.5965 0.048*
C11 0.8248 (2) 0.6797 (3) 0.55651 (19) 0.0276 (6)
H11A 0.8479 0.6563 0.6120 0.041*
H11B 0.8778 0.6891 0.5187 0.041*
H11C 0.7837 0.5914 0.5384 0.041*
C12 0.67785 (19) 0.8119 (3) 0.41935 (17) 0.0245 (6)
H12 0.6606 0.8612 0.3688 0.029*
C13 0.55193 (18) 0.4505 (3) 0.40219 (17) 0.0240 (6)
C14 0.5934 (2) 0.3493 (4) 0.46096 (19) 0.0312 (7)
H14 0.6403 0.3914 0.4964 0.037*
C15 0.5666 (2) 0.1883 (3) 0.46788 (19) 0.0316 (7)
H15 0.5948 0.1210 0.5083 0.038*
C16 0.4991 (2) 0.1253 (3) 0.4164 (2) 0.0323 (7)
H16 0.4833 0.0135 0.4191 0.039*
C17 0.4546 (2) 0.2260 (3) 0.36077 (18) 0.0282 (6)
H17 0.4065 0.1826 0.3271 0.034*
C18 0.47830 (19) 0.3887 (3) 0.35274 (16) 0.0245 (6)
C19 0.42423 (19) 0.4918 (3) 0.29410 (17) 0.0247 (6)
C20 0.32655 (19) 0.4815 (3) 0.29415 (18) 0.0280 (6)
H20 0.2962 0.4128 0.3327 0.034*
C21 0.2735 (2) 0.5700 (4) 0.23883 (19) 0.0336 (7)
H21 0.2073 0.5609 0.2397 0.040*
C22 0.3156 (2) 0.6708 (4) 0.1826 (2) 0.0371 (7)
H22 0.2789 0.7308 0.1446 0.045*
C23 0.4127 (2) 0.6838 (4) 0.18199 (19) 0.0367 (8)
H23 0.4424 0.7541 0.1438 0.044*
C24 0.4663 (2) 0.5949 (4) 0.23681 (18) 0.0304 (7)
H24 0.5325 0.6041 0.2354 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0280 (12) 0.0215 (11) 0.0248 (12) 0.0027 (9) 0.0003 (9) 0.0034 (10)
N2 0.0218 (11) 0.0250 (12) 0.0247 (11) 0.0029 (9) −0.0005 (9) −0.0013 (10)
N3 0.0282 (12) 0.0252 (12) 0.0248 (12) 0.0016 (10) −0.0049 (10) −0.0008 (10)
C1 0.0377 (16) 0.0289 (15) 0.0334 (16) 0.0005 (13) 0.0023 (13) 0.0120 (14)
C2 0.0218 (13) 0.0214 (12) 0.0216 (13) 0.0049 (11) 0.0021 (11) 0.0014 (12)
C3 0.0247 (14) 0.0243 (13) 0.0215 (13) 0.0042 (11) −0.0006 (11) 0.0012 (12)
C4 0.0201 (13) 0.0302 (15) 0.0249 (13) 0.0072 (11) 0.0024 (11) −0.0055 (12)
C5 0.0318 (16) 0.0471 (18) 0.0339 (16) 0.0055 (14) −0.0057 (14) −0.0054 (16)
C6 0.0334 (17) 0.056 (2) 0.0438 (19) 0.0024 (15) −0.0076 (15) −0.0196 (18)
C7 0.0269 (16) 0.0374 (18) 0.062 (2) −0.0023 (14) 0.0000 (15) −0.0175 (17)
C8 0.0273 (16) 0.0272 (15) 0.0502 (18) 0.0014 (12) 0.0067 (14) −0.0066 (15)
C9 0.0210 (13) 0.0241 (14) 0.0324 (14) 0.0034 (11) 0.0036 (12) −0.0065 (13)
C10 0.0287 (15) 0.0413 (18) 0.0264 (15) 0.0042 (14) 0.0048 (12) 0.0063 (13)
C11 0.0279 (14) 0.0273 (14) 0.0276 (14) 0.0031 (12) −0.0016 (12) 0.0065 (13)
C12 0.0285 (14) 0.0228 (14) 0.0220 (13) 0.0030 (11) −0.0004 (11) 0.0031 (11)
C13 0.0248 (14) 0.0238 (13) 0.0234 (13) 0.0049 (11) 0.0057 (11) −0.0019 (11)
C14 0.0301 (15) 0.0330 (16) 0.0305 (15) 0.0051 (12) 0.0007 (13) −0.0011 (13)
C15 0.0336 (16) 0.0267 (15) 0.0345 (16) 0.0106 (12) 0.0096 (13) 0.0099 (14)
C16 0.0336 (16) 0.0243 (14) 0.0391 (16) 0.0006 (13) 0.0152 (13) 0.0016 (14)
C17 0.0255 (14) 0.0287 (15) 0.0304 (15) −0.0037 (12) 0.0087 (12) −0.0015 (12)
C18 0.0254 (14) 0.0269 (14) 0.0211 (13) 0.0014 (11) 0.0088 (11) −0.0003 (11)
C19 0.0286 (14) 0.0238 (13) 0.0217 (13) −0.0018 (11) 0.0002 (12) −0.0067 (12)
C20 0.0288 (15) 0.0272 (15) 0.0282 (14) −0.0041 (12) 0.0000 (13) −0.0076 (13)
C21 0.0303 (16) 0.0348 (16) 0.0356 (16) 0.0009 (13) −0.0067 (13) −0.0118 (14)
C22 0.0432 (18) 0.0377 (17) 0.0304 (16) 0.0063 (15) −0.0137 (14) −0.0030 (14)
C23 0.0448 (19) 0.0423 (19) 0.0230 (15) −0.0037 (15) −0.0044 (14) 0.0070 (14)
C24 0.0287 (15) 0.0367 (17) 0.0258 (14) −0.0031 (13) 0.0032 (12) −0.0005 (13)

Geometric parameters (Å, °)

N1—C2 1.364 (3) C11—H11A 0.9800
N1—C9 1.405 (4) C11—H11B 0.9800
N1—C1 1.457 (4) C11—H11C 0.9800
N2—N3 1.280 (3) C12—H12 0.9500
N2—C12 1.362 (4) C13—C14 1.400 (4)
N3—C13 1.418 (4) C13—C18 1.419 (4)
C1—H1A 0.9800 C14—C15 1.386 (4)
C1—H1B 0.9800 C14—H14 0.9500
C1—H1C 0.9800 C15—C16 1.379 (5)
C2—C12 1.361 (4) C15—H15 0.9500
C2—C3 1.538 (4) C16—C17 1.383 (4)
C3—C4 1.515 (4) C16—H16 0.9500
C3—C10 1.536 (4) C17—C18 1.389 (4)
C3—C11 1.544 (4) C17—H17 0.9500
C4—C5 1.381 (4) C18—C19 1.493 (4)
C4—C9 1.388 (4) C19—C24 1.397 (4)
C5—C6 1.401 (5) C19—C20 1.399 (4)
C5—H5 0.9500 C20—C21 1.384 (4)
C6—C7 1.381 (5) C20—H20 0.9500
C6—H6 0.9500 C21—C22 1.375 (5)
C7—C8 1.389 (5) C21—H21 0.9500
C7—H7 0.9500 C22—C23 1.392 (5)
C8—C9 1.388 (4) C22—H22 0.9500
C8—H8 0.9500 C23—C24 1.385 (4)
C10—H10A 0.9800 C23—H23 0.9500
C10—H10B 0.9800 C24—H24 0.9500
C10—H10C 0.9800
C2—N1—C9 111.6 (2) C3—C11—H11B 109.5
C2—N1—C1 124.6 (2) H11A—C11—H11B 109.5
C9—N1—C1 123.7 (2) C3—C11—H11C 109.5
N3—N2—C12 113.2 (2) H11A—C11—H11C 109.5
N2—N3—C13 114.0 (2) H11B—C11—H11C 109.5
N1—C1—H1A 109.5 C2—C12—N2 121.1 (2)
N1—C1—H1B 109.5 C2—C12—H12 119.5
H1A—C1—H1B 109.5 N2—C12—H12 119.5
N1—C1—H1C 109.5 C14—C13—N3 123.0 (3)
H1A—C1—H1C 109.5 C14—C13—C18 119.2 (3)
H1B—C1—H1C 109.5 N3—C13—C18 117.7 (2)
C12—C2—N1 123.1 (2) C15—C14—C13 120.6 (3)
C12—C2—C3 128.3 (2) C15—C14—H14 119.7
N1—C2—C3 108.6 (2) C13—C14—H14 119.7
C4—C3—C10 111.4 (2) C16—C15—C14 120.3 (3)
C4—C3—C2 101.0 (2) C16—C15—H15 119.8
C10—C3—C2 111.5 (2) C14—C15—H15 119.8
C4—C3—C11 111.8 (2) C15—C16—C17 119.6 (3)
C10—C3—C11 109.8 (2) C15—C16—H16 120.2
C2—C3—C11 111.3 (2) C17—C16—H16 120.2
C5—C4—C9 119.0 (3) C16—C17—C18 121.9 (3)
C5—C4—C3 131.1 (3) C16—C17—H17 119.0
C9—C4—C3 109.9 (2) C18—C17—H17 119.0
C4—C5—C6 119.0 (3) C17—C18—C13 118.3 (3)
C4—C5—H5 120.5 C17—C18—C19 118.9 (3)
C6—C5—H5 120.5 C13—C18—C19 122.8 (2)
C7—C6—C5 120.5 (3) C24—C19—C20 117.8 (3)
C7—C6—H6 119.7 C24—C19—C18 123.3 (2)
C5—C6—H6 119.7 C20—C19—C18 118.8 (3)
C6—C7—C8 121.6 (3) C21—C20—C19 120.9 (3)
C6—C7—H7 119.2 C21—C20—H20 119.5
C8—C7—H7 119.2 C19—C20—H20 119.5
C9—C8—C7 116.6 (3) C22—C21—C20 120.8 (3)
C9—C8—H8 121.7 C22—C21—H21 119.6
C7—C8—H8 121.7 C20—C21—H21 119.6
C8—C9—C4 123.3 (3) C21—C22—C23 119.2 (3)
C8—C9—N1 127.9 (3) C21—C22—H22 120.4
C4—C9—N1 108.8 (2) C23—C22—H22 120.4
C3—C10—H10A 109.5 C24—C23—C22 120.4 (3)
C3—C10—H10B 109.5 C24—C23—H23 119.8
H10A—C10—H10B 109.5 C22—C23—H23 119.8
C3—C10—H10C 109.5 C23—C24—C19 120.9 (3)
H10A—C10—H10C 109.5 C23—C24—H24 119.6
H10B—C10—H10C 109.5 C19—C24—H24 119.6
C3—C11—H11A 109.5
C12—N2—N3—C13 173.1 (2) C2—N1—C9—C4 2.7 (3)
C9—N1—C2—C12 175.1 (2) C1—N1—C9—C4 −174.8 (2)
C1—N1—C2—C12 −7.4 (4) N1—C2—C12—N2 176.2 (2)
C9—N1—C2—C3 −3.1 (3) C3—C2—C12—N2 −6.1 (4)
C1—N1—C2—C3 174.4 (2) N3—N2—C12—C2 177.9 (2)
C12—C2—C3—C4 −175.8 (3) N2—N3—C13—C14 −10.7 (4)
N1—C2—C3—C4 2.2 (3) N2—N3—C13—C18 172.1 (2)
C12—C2—C3—C10 −57.5 (4) N3—C13—C14—C15 −173.7 (3)
N1—C2—C3—C10 120.6 (3) C18—C13—C14—C15 3.5 (4)
C12—C2—C3—C11 65.5 (3) C13—C14—C15—C16 0.5 (4)
N1—C2—C3—C11 −116.5 (2) C14—C15—C16—C17 −3.5 (4)
C10—C3—C4—C5 60.5 (4) C15—C16—C17—C18 2.5 (4)
C2—C3—C4—C5 179.0 (3) C16—C17—C18—C13 1.5 (4)
C11—C3—C4—C5 −62.7 (4) C16—C17—C18—C19 −177.2 (2)
C10—C3—C4—C9 −119.1 (2) C14—C13—C18—C17 −4.4 (4)
C2—C3—C4—C9 −0.6 (3) N3—C13—C18—C17 172.9 (2)
C11—C3—C4—C9 117.7 (3) C14—C13—C18—C19 174.2 (3)
C9—C4—C5—C6 0.5 (4) N3—C13—C18—C19 −8.5 (4)
C3—C4—C5—C6 −179.0 (3) C17—C18—C19—C24 −132.0 (3)
C4—C5—C6—C7 −0.2 (5) C13—C18—C19—C24 49.4 (4)
C5—C6—C7—C8 −0.2 (5) C17—C18—C19—C20 45.8 (4)
C6—C7—C8—C9 0.3 (4) C13—C18—C19—C20 −132.8 (3)
C7—C8—C9—C4 0.1 (4) C24—C19—C20—C21 0.4 (4)
C7—C8—C9—N1 −179.6 (3) C18—C19—C20—C21 −177.5 (3)
C5—C4—C9—C8 −0.5 (4) C19—C20—C21—C22 −0.2 (4)
C3—C4—C9—C8 179.2 (2) C20—C21—C22—C23 −0.3 (5)
C5—C4—C9—N1 179.3 (2) C21—C22—C23—C24 0.7 (5)
C3—C4—C9—N1 −1.1 (3) C22—C23—C24—C19 −0.6 (5)
C2—N1—C9—C8 −177.6 (3) C20—C19—C24—C23 0.0 (4)
C1—N1—C9—C8 4.9 (4) C18—C19—C24—C23 177.8 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C19–C24, C4–C9 and C13–C18 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C1—H1C···Cg1i 0.98 2.86 3.582 (3) 131
C1—H1A···Cg1ii 0.98 3.02 3.948 (3) 160
C11—H11B···Cg3iii 0.98 2.74 3.721 (3) 179
C22—H22···Cg2iv 0.95 2.76 3.645 (3) 155

Symmetry codes: (i) x+1/2, −y+2, z; (ii) x, y+1, z; (iii) x+1/2, −y+1, z; (iv) −x+1, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2238).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2005). APEX2 and SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619. [DOI] [PubMed]
  6. Jones, P. G. (2004). Private Communication to the Cambridge Structural Database (Refcodes EZUCUX and EZUDAE). CCDC, Union Road, Cambridge, England.
  7. Jones, P. G. & Chrapkowski, A. (2004). Private Communication to the Cambridge Structural Database (Refcode YADTIH). CCDC, Union Road, Cambridge, England.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Möhlmann, G. & van der Vorst, C. (1989). Side Chain Liquid Crystal Polymers, edited by C. Mcardle. Glasgow: Plenum and Hall.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Zollinger, H. (1987). In Colour Chemistry, Synthesis, Properties and Applications of Organic Dyes Weinheim: VCH.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008890/ez2238sup1.cif

e-67-0o893-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008890/ez2238Isup2.hkl

e-67-0o893-Isup2.hkl (87.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES