Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 26;67(Pt 4):o981–o982. doi: 10.1107/S1600536811010312

(2SR,3RS)-Methyl 2-(adamantan-1-yl)-3-phenyl­sulfonyl-3-(pyridin-2-ylsulfan­yl)propano­ate dichloro­methane hemisolvate

Rosa-Luisa Meza-León a, Sylvain Bernès b, Elsie Ramírez Domínguez a, Martha Sosa-Rivadeneyra a, Leticia Quintero-Cortés a,*
PMCID: PMC3099796  PMID: 21754240

Abstract

The title compound, C25H29NO4S2 0.5CH2Cl2, was obtained as a racemate. The pyridine and phenyl rings are arranged face-to-face, giving a weak intra­molecular π–π inter­action [centroid–centroid separation = 3.759 (3) Å]. These inter­actions are extended inter­molecularly, forming chains of stacked rings along [001] with separations of 3.859 (3) and 3.916 (3) Å. The solvent used for crystallization, CH2Cl2, is located in voids between the chains of mol­ecules, with a site occupancy of 0.5.

Related literature

For chemical, polymer and pharmaceutical applications of adamantane and its derivatives, see: Beller et al. (2002); Mathias et al. (1995, 2001); Stotskaya et al. (1995); Spasov et al. (2000); Enomoto et al. (2010). For catalyst reactions, see: Taoufik et al. (1999). For poly(p-phenyl­ene­vinyl­ene) (PPV) derivatives, see: Jeong et al. (2002). For their anti­viral and disease-related activity, see: Kadi et al. (2010); Papanastasiou et al. (2010) and for their use in the treatment of influenza A, leukemia and deafness, see: Zarubaev et al. (2010); Spasov et al. (2000). For the Barton deca­rboxylation reaction, see: Togo (2004).graphic file with name e-67-0o981-scheme1.jpg

Experimental

Crystal data

  • C25H29NO4S2·0.5CH2Cl2

  • M r = 514.08

  • Monoclinic, Inline graphic

  • a = 12.709 (4) Å

  • b = 27.820 (6) Å

  • c = 14.448 (3) Å

  • β = 101.254 (19)°

  • V = 5010 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.40 mm

Data collection

  • Siemens P4 diffractometer

  • 6603 measured reflections

  • 4434 independent reflections

  • 2936 reflections with I > 2σ(I)

  • R int = 0.026

  • 3 standard reflections every 97 reflections intensity decay: 40%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.154

  • S = 1.03

  • 4434 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010312/jj2070sup1.cif

e-67-0o981-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010312/jj2070Isup2.hkl

e-67-0o981-Isup2.hkl (217.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support of the Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla.

supplementary crystallographic information

Comment

Adamantane and its derivatives have a broad range of chemical (Taoufik et al., 1999; Beller et al., 2002), polymer (Mathias et al., 1995, 2001), and pharmaceutical (Stotskaya et al., 1995; Spasov et al., 2000; Enomoto et al., 2010) applications. Compounds containing adamantyl radicals are useful catalysts for many chemical reactions, such as the refining of halogen atoms and preparation of heterogeneous bimetallic catalysts (Taoufik et al., 1999). The rigid, spherical shape of adamantane reduces interchain interactions in polymers and may help with the synthesis of poly(p-phenylenevinylene) (PPV) derivatives (Jeong et al., 2002). Adamantane-containing molecules have also been found to have antiviral activity (Kadi et al., 2010; Papanastasiou et al., 2010) and have been used in the treatment of influenza A (Zarubaev et al., 2010), HIV-1, leukemia and deafness (Spasov et al., 2000).

Alkyl radicals derived from O-acyl esters of N-hydroxy-2-thiopyridone (a.k.a. Barton esters) are nucleophilic, so treatment with electron-deficient olefins such as vinyl sulfones generates the corresponding addition products (alkyl 2-pyridyl sulfides) effectively. Derivatives generated from adamantylcarboxylic acid using the Barton method (Togo, 2004) have potential biological activity. Crystallization of the racemate in the title compound is similar to an anti addition of the Barton ester to the olefin.

The title compound, is a racemic mixture of enantiomers (Fig. 2). The CH2Cl2 solvent molecule is placed close to a 2-fold axis with a site occupancy of 1/2. The dihedral angle between the mean planes of the phenyl and pyridine rings is 20.24 (12)° [centroid to centroid separation = 3.759 (3)Å]. This π–π intramolecular interaction is extended along the c axis, with intermolecular pyridine-pyridine and phenyl-phenyl interactions related by 2-fold symmetry. Distances separating rings are 3.859 (3)Å and 3.916 (3)Å, respectively, while angles between aromatic mean planes are 25.28 (13)° and 19.84 (7)° (Fig. 3). CH2Cl2 molecules are placed between the chains of molecules stacked through these π–π contacts.

Experimental

To a solution of 1,3-dicyclohexylcarbodiimide (DCC, 2 mmol) in CH2Cl2 (8 ml) was added N-hydroxy-2-thiopyridone (2.2 mmol) under an argon atmosphere. The solution was protected from light with aluminium foil and kept at 273 K in an ice bath. Adamantylcarboxylic acid (2 mmol) dissolved in CH2Cl2 was added dropwise to the solution. After the addition, the mixture was allowed to reach room temperature and further stirred for a period of 1.5 h. The resulting yellow solid was filtered on a bed of silica gel and washed with dry CH2Cl2 (all in dark). The filtrate was concentrated under reduced pressure, to give a crystalline solid. m.p. 164–166°C (compound 1 in Fig. 1). O-acyl ester 1 (1 mmol) was dissolved in CH2Cl2 (5 ml) under an argon atmosphere and (E)-methyl-3-(phenylsulfonyl)acrylate 2 (1.1 mmol) was added to the yellowish solution. The mixture was irradiated with a tungsten lamp (150 W), following the reaction by TLC. The products were purified by chromatography on silica gel (eluent: hexane:ethyl-acetate, 7:3). A white crystalline solid was obtained with a yield of 88%. m.p. 145–146 °C (compound 3).This compound was crystallized by slow evaporation of a CH2Cl2 solution, affording the title hemisolvate.

Refinement

Crystals of the title hemisolvate are stable in air for months, but solvent loss occurs under X-ray irradiation. A complete data set for the studied crystal was however collected over a period of 54 h, during which the intensity decayed by ca. 40%. Raw data were corrected using three periodically measured reflections. All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2), or 0.98 Å (methine CH). Isotropic displacement parameters for H atoms were computed as Uiso(H) = 1.5 Ueq(carrier C) for the methyl group and Uiso(H) = 1.2 Ueq(carrier C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Synthetic route for the title compound.

Fig. 2.

Fig. 2.

The structure of the title compound, with displacement ellipsoids at the 30% probability level for non-H atoms.

Fig. 3.

Fig. 3.

Packing diagram of (I) viewed down the b axis. Distances for intra- and inter-molecular π–π interactions are labeled for one stack of molecules along the c axis. The solvent molecules are shown as spacefilled and the H atoms are omitted for clarity.

Crystal data

C25H29NO4S2·0.5CH2Cl2 F(000) = 2168
Mr = 514.08 Dx = 1.363 Mg m3
Monoclinic, C2/c Melting point: 418 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 12.709 (4) Å Cell parameters from 78 reflections
b = 27.820 (6) Å θ = 4.8–12.4°
c = 14.448 (3) Å µ = 0.35 mm1
β = 101.254 (19)° T = 298 K
V = 5010 (2) Å3 Irregular, colourless
Z = 8 0.40 × 0.40 × 0.40 mm

Data collection

Siemens P4 diffractometer Rint = 0.026
Radiation source: fine-focus sealed tube, FN4 θmax = 25.1°, θmin = 1.8°
graphite h = −15→4
2θ/ω scans k = −33→33
6603 measured reflections l = −17→17
4434 independent reflections 3 standard reflections every 97 reflections
2936 reflections with I > 2σ(I) intensity decay: 40%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0607P)2 + 7.2667P] where P = (Fo2 + 2Fc2)/3
4434 reflections (Δ/σ)max < 0.001
316 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.31 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.17793 (7) 0.34186 (3) 0.15045 (6) 0.0583 (3)
S2 0.17440 (7) 0.32202 (3) −0.05013 (6) 0.0564 (3)
N1 −0.0193 (2) 0.36197 (12) −0.1021 (2) 0.0697 (8)
O1 0.3954 (2) 0.35456 (12) −0.0133 (3) 0.1005 (11)
O2 0.44844 (18) 0.38921 (10) 0.1263 (2) 0.0777 (8)
O3 0.1643 (3) 0.38017 (10) 0.21275 (18) 0.0860 (9)
O4 0.2695 (2) 0.31153 (10) 0.1755 (2) 0.0830 (8)
C1 0.3772 (3) 0.37941 (13) 0.0485 (3) 0.0607 (9)
C2 0.2724 (2) 0.40456 (11) 0.0484 (2) 0.0475 (7)
H2A 0.2785 0.4182 0.1117 0.057*
C3 0.1791 (2) 0.36853 (11) 0.0372 (2) 0.0465 (7)
H3A 0.1127 0.3871 0.0198 0.056*
C4 0.5495 (3) 0.36437 (17) 0.1363 (4) 0.1094 (19)
H4A 0.5953 0.3738 0.1944 0.164*
H4B 0.5831 0.3724 0.0843 0.164*
H4C 0.5374 0.3303 0.1368 0.164*
C5 0.2526 (2) 0.44789 (11) −0.0205 (2) 0.0490 (8)
C6 0.2242 (5) 0.43425 (15) −0.1234 (3) 0.0962 (15)
H6A 0.1620 0.4133 −0.1340 0.115*
H6B 0.2835 0.4169 −0.1411 0.115*
C7 0.1992 (6) 0.48093 (18) −0.1860 (3) 0.125 (2)
H7A 0.1770 0.4725 −0.2528 0.150*
C8 0.1119 (5) 0.5102 (2) −0.1524 (6) 0.131 (3)
H8A 0.0969 0.5390 −0.1906 0.157*
H8B 0.0465 0.4914 −0.1604 0.157*
C9 0.1435 (3) 0.52322 (17) −0.0573 (5) 0.1054 (18)
H9A 0.0858 0.5420 −0.0387 0.126*
C10 0.2416 (3) 0.55331 (14) −0.0445 (4) 0.0905 (14)
H10A 0.2590 0.5649 0.0199 0.109*
H10D 0.2290 0.5809 −0.0863 0.109*
C11 0.3329 (3) 0.52465 (13) −0.0658 (3) 0.0745 (12)
H11A 0.3979 0.5444 −0.0543 0.089*
C12 0.3515 (3) 0.48017 (12) −0.0043 (3) 0.0668 (10)
H12A 0.3687 0.4897 0.0615 0.080*
H12B 0.4121 0.4624 −0.0185 0.080*
C13 0.3074 (5) 0.50983 (18) −0.1689 (4) 0.1148 (19)
H13A 0.3647 0.4899 −0.1836 0.138*
H13B 0.3004 0.5380 −0.2091 0.138*
C14 0.1612 (3) 0.47823 (15) 0.0025 (4) 0.0888 (14)
H14A 0.0958 0.4593 −0.0082 0.107*
H14B 0.1776 0.4872 0.0686 0.107*
C15 0.0612 (3) 0.30632 (12) 0.1304 (2) 0.0502 (8)
C16 0.0685 (3) 0.25765 (13) 0.1145 (3) 0.0624 (9)
H16A 0.1348 0.2432 0.1162 0.075*
C17 −0.0236 (4) 0.23100 (14) 0.0963 (3) 0.0764 (11)
H17A −0.0204 0.1981 0.0860 0.092*
C18 −0.1212 (3) 0.25308 (18) 0.0932 (3) 0.0794 (12)
H18A −0.1837 0.2349 0.0800 0.095*
C19 −0.1273 (3) 0.30086 (17) 0.1089 (3) 0.0772 (11)
H19A −0.1937 0.3152 0.1071 0.093*
C20 −0.0357 (3) 0.32805 (14) 0.1276 (3) 0.0646 (9)
H20A −0.0395 0.3609 0.1382 0.077*
C21 0.0357 (3) 0.32124 (13) −0.0982 (2) 0.0543 (8)
C22 −0.0087 (3) 0.27858 (15) −0.1342 (3) 0.0731 (11)
H22A 0.0319 0.2505 −0.1279 0.088*
C23 −0.1137 (4) 0.2781 (2) −0.1794 (3) 0.0878 (13)
H23A −0.1452 0.2498 −0.2055 0.105*
C24 −0.1705 (3) 0.3188 (2) −0.1856 (3) 0.0879 (14)
H24A −0.2418 0.3192 −0.2168 0.105*
C25 −0.1224 (3) 0.36013 (18) −0.1453 (3) 0.0842 (13)
H25A −0.1634 0.3880 −0.1483 0.101*
Cl1 0.4213 (8) 0.5932 (4) 0.1685 (5) 0.185 (4) 0.50
Cl2 0.5855 (5) 0.6034 (3) 0.3296 (5) 0.146 (3) 0.50
C26 0.5288 (10) 0.6258 (4) 0.2308 (9) 0.117 (4) 0.50
H26A 0.5822 0.6291 0.1915 0.141* 0.50
H26B 0.5038 0.6578 0.2421 0.141* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0626 (5) 0.0619 (6) 0.0460 (5) −0.0173 (4) −0.0003 (4) 0.0039 (4)
S2 0.0525 (5) 0.0586 (5) 0.0574 (5) −0.0086 (4) 0.0087 (4) −0.0117 (4)
N1 0.0573 (18) 0.071 (2) 0.072 (2) −0.0139 (16) −0.0071 (15) 0.0036 (16)
O1 0.0538 (16) 0.102 (2) 0.142 (3) 0.0152 (15) 0.0085 (17) −0.038 (2)
O2 0.0442 (13) 0.0790 (18) 0.097 (2) −0.0072 (12) −0.0189 (13) 0.0219 (15)
O3 0.126 (2) 0.0806 (18) 0.0551 (15) −0.0426 (17) 0.0268 (15) −0.0229 (14)
O4 0.0597 (15) 0.090 (2) 0.0858 (19) −0.0064 (14) −0.0193 (13) 0.0332 (16)
C1 0.0431 (18) 0.051 (2) 0.082 (3) −0.0051 (16) −0.0023 (18) 0.0075 (19)
C2 0.0397 (16) 0.0519 (18) 0.0468 (17) −0.0052 (14) −0.0015 (13) −0.0003 (14)
C3 0.0434 (16) 0.0497 (18) 0.0430 (17) −0.0056 (14) 0.0002 (13) −0.0015 (14)
C4 0.045 (2) 0.084 (3) 0.181 (5) 0.002 (2) −0.023 (3) 0.037 (3)
C5 0.0362 (15) 0.0476 (18) 0.059 (2) −0.0061 (13) 0.0002 (14) 0.0027 (15)
C6 0.151 (4) 0.071 (3) 0.058 (2) −0.037 (3) −0.001 (3) 0.009 (2)
C7 0.230 (7) 0.073 (3) 0.059 (3) −0.062 (4) −0.005 (4) 0.013 (2)
C8 0.104 (4) 0.076 (3) 0.180 (6) −0.026 (3) −0.054 (4) 0.042 (4)
C9 0.047 (2) 0.079 (3) 0.183 (6) 0.008 (2) 0.006 (3) 0.038 (4)
C10 0.076 (3) 0.056 (2) 0.133 (4) 0.006 (2) 0.005 (3) 0.021 (2)
C11 0.049 (2) 0.055 (2) 0.114 (3) −0.0093 (17) 0.001 (2) 0.020 (2)
C12 0.0418 (18) 0.055 (2) 0.095 (3) −0.0078 (16) −0.0066 (17) 0.015 (2)
C13 0.168 (5) 0.078 (3) 0.112 (4) −0.002 (3) 0.058 (4) 0.032 (3)
C14 0.055 (2) 0.072 (3) 0.142 (4) 0.010 (2) 0.027 (2) 0.028 (3)
C15 0.0538 (19) 0.055 (2) 0.0416 (17) −0.0116 (16) 0.0084 (14) 0.0016 (15)
C16 0.064 (2) 0.054 (2) 0.069 (2) −0.0032 (18) 0.0145 (18) 0.0095 (18)
C17 0.096 (3) 0.057 (2) 0.079 (3) −0.023 (2) 0.026 (2) −0.002 (2)
C18 0.069 (3) 0.099 (3) 0.073 (3) −0.034 (2) 0.022 (2) −0.002 (2)
C19 0.059 (2) 0.096 (3) 0.081 (3) −0.007 (2) 0.024 (2) −0.005 (2)
C20 0.067 (2) 0.063 (2) 0.067 (2) −0.0033 (19) 0.0208 (18) −0.0039 (18)
C21 0.0552 (19) 0.068 (2) 0.0389 (17) −0.0183 (18) 0.0073 (14) −0.0029 (16)
C22 0.074 (2) 0.075 (3) 0.071 (2) −0.027 (2) 0.014 (2) −0.020 (2)
C23 0.079 (3) 0.102 (4) 0.080 (3) −0.039 (3) 0.010 (2) −0.025 (3)
C24 0.063 (3) 0.135 (4) 0.060 (2) −0.040 (3) −0.0044 (19) 0.001 (3)
C25 0.058 (2) 0.100 (3) 0.086 (3) −0.011 (2) −0.008 (2) 0.011 (3)
Cl1 0.187 (7) 0.233 (7) 0.133 (5) −0.043 (5) 0.022 (4) −0.097 (5)
Cl2 0.101 (3) 0.159 (4) 0.154 (5) 0.051 (3) −0.035 (3) −0.050 (4)
C26 0.111 (11) 0.150 (9) 0.096 (9) 0.013 (7) 0.029 (6) 0.009 (7)

Geometric parameters (Å, °)

S1—O4 1.426 (3) C10—H10D 0.9700
S1—O3 1.427 (3) C11—C12 1.515 (5)
S1—C15 1.759 (3) C11—C13 1.518 (7)
S1—C3 1.799 (3) C11—H11A 0.9800
S2—C21 1.764 (3) C12—H12A 0.9700
S2—C3 1.800 (3) C12—H12B 0.9700
N1—C21 1.327 (5) C13—H13A 0.9700
N1—C25 1.338 (5) C13—H13B 0.9700
O1—C1 1.187 (5) C14—H14A 0.9700
O2—C1 1.326 (4) C14—H14B 0.9700
O2—C4 1.440 (5) C15—C20 1.366 (5)
C1—C2 1.505 (5) C15—C16 1.379 (5)
C2—C3 1.537 (4) C16—C17 1.367 (5)
C2—C5 1.552 (4) C16—H16A 0.9300
C2—H2A 0.9800 C17—C18 1.376 (6)
C3—H3A 0.9800 C17—H17A 0.9300
C4—H4A 0.9600 C18—C19 1.353 (6)
C4—H4B 0.9600 C18—H18A 0.9300
C4—H4C 0.9600 C19—C20 1.370 (5)
C5—C6 1.508 (5) C19—H19A 0.9300
C5—C14 1.524 (5) C20—H20A 0.9300
C5—C12 1.526 (4) C21—C22 1.372 (5)
C6—C7 1.579 (6) C22—C23 1.366 (6)
C6—H6A 0.9700 C22—H22A 0.9300
C6—H6B 0.9700 C23—C24 1.337 (6)
C7—C8 1.530 (9) C23—H23A 0.9300
C7—C13 1.570 (8) C24—C25 1.376 (6)
C7—H7A 0.9800 C24—H24A 0.9300
C8—C9 1.401 (9) C25—H25A 0.9300
C8—H8A 0.9700 Cl1—C26i 1.726 (14)
C8—H8B 0.9700 Cl1—C26 1.737 (15)
C9—C10 1.483 (6) Cl2—C26 1.594 (14)
C9—C14 1.513 (6) Cl2—C26i 1.663 (15)
C9—H9A 0.9800 C26—H26A 0.9700
C10—C11 1.488 (6) C26—H26B 0.9700
C10—H10A 0.9700
O4—S1—O3 118.38 (18) H10A—C10—H10D 108.2
O4—S1—C15 109.21 (16) C10—C11—C12 110.8 (4)
O3—S1—C15 108.75 (17) C10—C11—C13 108.8 (4)
O4—S1—C3 108.91 (16) C12—C11—C13 109.4 (4)
O3—S1—C3 106.81 (16) C10—C11—H11A 109.2
C15—S1—C3 103.79 (14) C12—C11—H11A 109.2
C21—S2—C3 100.30 (16) C13—C11—H11A 109.2
C21—N1—C25 116.5 (3) C11—C12—C5 111.2 (3)
C1—O2—C4 115.7 (4) C11—C12—H12A 109.4
O1—C1—O2 123.8 (3) C5—C12—H12A 109.4
O1—C1—C2 124.9 (3) C11—C12—H12B 109.4
O2—C1—C2 111.3 (3) C5—C12—H12B 109.4
C1—C2—C3 111.2 (3) H12A—C12—H12B 108.0
C1—C2—C5 113.2 (3) C11—C13—C7 107.8 (4)
C3—C2—C5 114.4 (2) C11—C13—H13A 110.1
C1—C2—H2A 105.7 C7—C13—H13A 110.1
C3—C2—H2A 105.7 C11—C13—H13B 110.1
C5—C2—H2A 105.7 C7—C13—H13B 110.1
C2—C3—S1 108.4 (2) H13A—C13—H13B 108.5
C2—C3—S2 117.5 (2) C9—C14—C5 111.6 (4)
S1—C3—S2 109.63 (17) C9—C14—H14A 109.3
C2—C3—H3A 106.9 C5—C14—H14A 109.3
S1—C3—H3A 106.9 C9—C14—H14B 109.3
S2—C3—H3A 106.9 C5—C14—H14B 109.3
O2—C4—H4A 109.5 H14A—C14—H14B 108.0
O2—C4—H4B 109.5 C20—C15—C16 121.2 (3)
H4A—C4—H4B 109.5 C20—C15—S1 118.9 (3)
O2—C4—H4C 109.5 C16—C15—S1 119.9 (3)
H4A—C4—H4C 109.5 C17—C16—C15 118.8 (4)
H4B—C4—H4C 109.5 C17—C16—H16A 120.6
C6—C5—C14 108.0 (3) C15—C16—H16A 120.6
C6—C5—C12 109.3 (3) C16—C17—C18 119.7 (4)
C14—C5—C12 106.3 (3) C16—C17—H17A 120.1
C6—C5—C2 114.5 (3) C18—C17—H17A 120.1
C14—C5—C2 109.0 (3) C19—C18—C17 120.9 (4)
C12—C5—C2 109.5 (2) C19—C18—H18A 119.5
C5—C6—C7 109.9 (3) C17—C18—H18A 119.5
C5—C6—H6A 109.7 C18—C19—C20 120.0 (4)
C7—C6—H6A 109.7 C18—C19—H19A 120.0
C5—C6—H6B 109.7 C20—C19—H19A 120.0
C7—C6—H6B 109.7 C15—C20—C19 119.2 (4)
H6A—C6—H6B 108.2 C15—C20—H20A 120.4
C8—C7—C13 110.1 (4) C19—C20—H20A 120.4
C8—C7—C6 109.5 (5) N1—C21—C22 123.2 (3)
C13—C7—C6 105.0 (5) N1—C21—S2 118.9 (2)
C8—C7—H7A 110.7 C22—C21—S2 117.7 (3)
C13—C7—H7A 110.7 C23—C22—C21 118.8 (4)
C6—C7—H7A 110.7 C23—C22—H22A 120.6
C9—C8—C7 111.2 (4) C21—C22—H22A 120.6
C9—C8—H8A 109.4 C24—C23—C22 119.2 (4)
C7—C8—H8A 109.4 C24—C23—H23A 120.4
C9—C8—H8B 109.4 C22—C23—H23A 120.4
C7—C8—H8B 109.4 C23—C24—C25 119.4 (4)
H8A—C8—H8B 108.0 C23—C24—H24A 120.3
C8—C9—C10 109.9 (5) C25—C24—H24A 120.3
C8—C9—C14 109.2 (5) N1—C25—C24 122.9 (5)
C10—C9—C14 111.6 (4) N1—C25—H25A 118.6
C8—C9—H9A 108.7 C24—C25—H25A 118.6
C10—C9—H9A 108.7 Cl2—C26—Cl1 115.6 (7)
C14—C9—H9A 108.7 Cl2—C26—H26A 108.4
C9—C10—C11 110.0 (4) Cl1—C26—H26A 108.4
C9—C10—H10A 109.7 Cl2—C26—H26B 108.4
C11—C10—H10A 109.7 Cl1—C26—H26B 108.4
C9—C10—H10D 109.7 H26A—C26—H26B 107.4
C11—C10—H10D 109.7
C4—O2—C1—O1 −5.1 (5) C14—C5—C12—C11 −58.7 (4)
C4—O2—C1—C2 176.1 (3) C2—C5—C12—C11 −176.3 (3)
O1—C1—C2—C3 57.9 (5) C10—C11—C13—C7 −57.4 (5)
O2—C1—C2—C3 −123.3 (3) C12—C11—C13—C7 63.9 (5)
O1—C1—C2—C5 −72.6 (5) C8—C7—C13—C11 53.4 (6)
O2—C1—C2—C5 106.2 (3) C6—C7—C13—C11 −64.3 (5)
C1—C2—C3—S1 80.7 (3) C8—C9—C14—C5 63.4 (5)
C5—C2—C3—S1 −149.4 (2) C10—C9—C14—C5 −58.3 (6)
C1—C2—C3—S2 −44.2 (3) C6—C5—C14—C9 −59.5 (5)
C5—C2—C3—S2 85.6 (3) C12—C5—C14—C9 57.7 (5)
O4—S1—C3—C2 −69.3 (2) C2—C5—C14—C9 175.6 (4)
O3—S1—C3—C2 59.7 (3) O4—S1—C15—C20 164.6 (3)
C15—S1—C3—C2 174.5 (2) O3—S1—C15—C20 34.1 (3)
O4—S1—C3—S2 60.2 (2) C3—S1—C15—C20 −79.3 (3)
O3—S1—C3—S2 −170.85 (17) O4—S1—C15—C16 −17.7 (3)
C15—S1—C3—S2 −56.0 (2) O3—S1—C15—C16 −148.2 (3)
C21—S2—C3—C2 −138.9 (2) C3—S1—C15—C16 98.3 (3)
C21—S2—C3—S1 96.70 (18) C20—C15—C16—C17 −0.4 (5)
C1—C2—C5—C6 73.5 (4) S1—C15—C16—C17 −178.0 (3)
C3—C2—C5—C6 −55.4 (4) C15—C16—C17—C18 0.7 (6)
C1—C2—C5—C14 −165.5 (3) C16—C17—C18—C19 −0.7 (6)
C3—C2—C5—C14 65.6 (4) C17—C18—C19—C20 0.5 (6)
C1—C2—C5—C12 −49.7 (4) C16—C15—C20—C19 0.2 (5)
C3—C2—C5—C12 −178.5 (3) S1—C15—C20—C19 177.9 (3)
C14—C5—C6—C7 55.1 (5) C18—C19—C20—C15 −0.3 (6)
C12—C5—C6—C7 −60.2 (5) C25—N1—C21—C22 −1.3 (5)
C2—C5—C6—C7 176.6 (4) C25—N1—C21—S2 175.3 (3)
C5—C6—C7—C8 −54.8 (6) C3—S2—C21—N1 32.5 (3)
C5—C6—C7—C13 63.5 (6) C3—S2—C21—C22 −150.6 (3)
C13—C7—C8—C9 −56.3 (6) N1—C21—C22—C23 2.5 (6)
C6—C7—C8—C9 58.7 (5) S2—C21—C22—C23 −174.2 (3)
C7—C8—C9—C10 60.8 (5) C21—C22—C23—C24 −1.3 (6)
C7—C8—C9—C14 −61.9 (5) C22—C23—C24—C25 −0.8 (7)
C8—C9—C10—C11 −65.1 (5) C21—N1—C25—C24 −1.0 (6)
C14—C9—C10—C11 56.2 (6) C23—C24—C25—N1 2.1 (7)
C9—C10—C11—C12 −57.0 (5) Cl1i—Cl2—C26—Cl1 13 (4)
C9—C10—C11—C13 63.4 (5) C26i—Cl2—C26—Cl1 −62.4 (9)
C10—C11—C12—C5 60.2 (5) Cl2i—Cl1—C26—Cl2 127 (3)
C13—C11—C12—C5 −59.8 (5) C26i—Cl1—C26—Cl2 64.3 (11)
C6—C5—C12—C11 57.6 (4)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2070).

References

  1. Beller, M., Ehrentraut, A., Fuhrmann, C. & Zapf, A. (2002). WO Patent 0210178.
  2. Enomoto, H., Sawa, A., Suhara, H., Yamamoto, N., Inoue, H., Setoguchi, Ch., Tsuji, F., Okamoto, M., Sasabuchi, Y., Horiuchi, M. & Ban, M. (2010). Bioorg. Med. Chem. Lett. 20, 4479–4482. [DOI] [PubMed]
  3. Jeong, H. Y., Lee, Y. K., Talaie, A., Kim, K. M., Kwon, Y. D., Jang, Y. R., Yoo, K. H., Choo, D. J. & Jang, J. (2002). Thin Solid Films, 417, 171–174.
  4. Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. [DOI] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Mathias, L. J., Jensen, J. J., Reichert, V. R., Lewis, C. M. & Tullos, G. L. (1995). Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 36, 741–742.
  7. Mathias, L. J., Jensen, J., Thigpen, K., McGowen, J., McCormick, D. & Somlai, L. (2001). Polymer, 42, 6527–6537.
  8. Papanastasiou, I., Prousis, K. C., Georgikopoulou, K., Pavlidis, T., Scoulica, E., Kolocouris, N. & Calogeropoulou, T. (2010). Bioorg. Med. Chem. Lett. 20, 5484–5487. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  11. Spasov, A. A., Khamidova, T. V., Bugaeva, L. I. & Morozov, I. S. (2000). Pharm. Chem. J. 34, 1–7.
  12. Stotskaya, L. L., Serbin, A. V., Munshi, K., Kozeletskaya, K. N., Sominina, A. A., Kiselev, O. I., Zaitseva, K. V. & Natochin, Yu. V. (1995). Khim. Farm. Zh. 29, 19–22.
  13. Taoufik, M., Santini, C. C. & Basset, J.-M. (1999). J. Organomet. Chem. 580, 128–136.
  14. Togo, H. (2004). Advanced Free Radical Reactions for Organic Synthesis, edited by H. Togo, pp. 199–213. Amsterdam: Elsevier BV.
  15. Zarubaev, V. V., Golod, E. L., Anfimov, P. M., Shtro, A. A., Saraev, V. V., Gavrilov, A. S., Logvinov, A. V. & Kiselev, O. I. (2010). Bioorg. Med. Chem. 18, 839–848. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010312/jj2070sup1.cif

e-67-0o981-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010312/jj2070Isup2.hkl

e-67-0o981-Isup2.hkl (217.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES