Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o822. doi: 10.1107/S160053681100804X

N-Ethyl-3,5-dinitro­benzamide

Jia-Ying Xu a,*, Wei-Hua Cheng b
PMCID: PMC3099801  PMID: 21754106

Abstract

In the title mol­ecule, C9H9N3O5, the dihedral angle between the mean planes of the amide group and the benzene ring is 31.24 (14)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules to form one-dimensional chains propagating in [100].

Related literature

For the synthesis of the title compound, see: Lee et al. (2009). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o822-scheme1.jpg

Experimental

Crystal data

  • C9H9N3O5

  • M r = 239.19

  • Triclinic, Inline graphic

  • a = 4.854 (1) Å

  • b = 10.488 (2) Å

  • c = 10.851 (2) Å

  • α = 101.49 (3)°

  • β = 97.84 (3)°

  • γ = 95.25 (3)°

  • V = 532.26 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.976, T max = 0.988

  • 2203 measured reflections

  • 1955 independent reflections

  • 1321 reflections with I > 2σ(I)

  • R int = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.161

  • S = 1.01

  • 1955 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100804X/su2259sup1.cif

e-67-0o822-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100804X/su2259Isup2.hkl

e-67-0o822-Isup2.hkl (96.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5i 0.86 2.13 2.886 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for data collection.

supplementary crystallographic information

Comment

The title compound is an important organic intermediate, and such amide derivatives exhibit biological activities, such as antibacterial and antifungal effects (Lee et al., 2009). Herein we report on the crystal structure of the title substitued benzamide compound.

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the amide group [atoms O5,N3,C7,C8, planar to within 0.012 Å] and the benzene ring (C1-C6) is 31.24 (14) °.

In the crystal of the title compound molecules are connected via N—H···O intermolecular hydrogen bonds (Table 1), to form a one-dimensional polymer propagating in [100]. These chains stack along the c axis direction.

Experimental

The title compound was prepared following a literature proceedure (Lee et al., 2009). Crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation, over a period of 5 days, of a solution of the title compound in ethanol [0.2 g, 0.84 mmol in 25 ml ethanol].

Refinement

All the H-atoms were positioned geometrically and constrained to ride on their parent atom: N-H = 0.86 Å, C—H = 0.93, 0.96 and 0.97 Å for CH(aromatic), CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C or N), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound. The N—H···O hydrogen bonds are shown as dashed lines.

Crystal data

C9H9N3O5 Z = 2
Mr = 239.19 F(000) = 248
Triclinic, P1 Dx = 1.492 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.854 (1) Å Cell parameters from 25 reflections
b = 10.488 (2) Å θ = 10–13°
c = 10.851 (2) Å µ = 0.12 mm1
α = 101.49 (3)° T = 293 K
β = 97.84 (3)° Block, colourless
γ = 95.25 (3)° 0.20 × 0.10 × 0.10 mm
V = 532.26 (19) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1321 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
graphite θmax = 25.4°, θmin = 1.9°
ω/2θ scans h = 0→5
Absorption correction: ψ scan (North et al., 1968) k = −12→12
Tmin = 0.976, Tmax = 0.988 l = −13→12
2203 measured reflections 3 standard reflections every 200 reflections
1955 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.090P)2] where P = (Fo2 + 2Fc2)/3
1955 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1490 (5) 0.7075 (2) 0.2465 (2) 0.0428 (6)
H1A −0.0017 0.6473 0.2494 0.051*
N1 0.0031 (5) 0.6713 (2) 0.0152 (2) 0.0617 (6)
O1 0.0675 (6) 0.6862 (3) −0.0856 (2) 0.0985 (9)
N2 0.8248 (5) 0.9842 (2) 0.2289 (3) 0.0576 (6)
C2 0.1956 (5) 0.7377 (2) 0.1327 (2) 0.0454 (6)
O2 −0.2072 (5) 0.6034 (2) 0.02613 (19) 0.0795 (7)
N3 0.4868 (4) 0.7427 (2) 0.57021 (18) 0.0453 (5)
H3A 0.6513 0.7677 0.5563 0.054*
C3 0.4127 (5) 0.8280 (2) 0.1236 (2) 0.0492 (6)
H3B 0.4392 0.8480 0.0459 0.059*
O3 0.8469 (5) 1.0119 (2) 0.1269 (2) 0.0911 (8)
C4 0.5890 (5) 0.8874 (2) 0.2352 (2) 0.0449 (6)
O4 0.9911 (4) 1.0292 (2) 0.3254 (2) 0.0743 (6)
O5 0.0241 (3) 0.70717 (19) 0.49151 (17) 0.0574 (5)
C5 0.5555 (5) 0.8591 (2) 0.3510 (2) 0.0414 (6)
H5A 0.6803 0.8997 0.4241 0.050*
C6 0.3318 (4) 0.7688 (2) 0.3573 (2) 0.0388 (5)
C7 0.2693 (4) 0.7366 (2) 0.4798 (2) 0.0408 (6)
C8 0.4582 (5) 0.7087 (2) 0.6918 (2) 0.0497 (6)
H8A 0.2783 0.7293 0.7144 0.060*
H8B 0.6035 0.7612 0.7572 0.060*
C9 0.4794 (7) 0.5668 (3) 0.6881 (3) 0.0712 (9)
H9A 0.4582 0.5484 0.7697 0.107*
H9B 0.6592 0.5465 0.6680 0.107*
H9C 0.3345 0.5145 0.6242 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0323 (12) 0.0467 (13) 0.0504 (14) 0.0078 (10) 0.0086 (10) 0.0101 (11)
N1 0.0608 (16) 0.0709 (16) 0.0496 (14) 0.0068 (13) 0.0017 (11) 0.0094 (11)
O1 0.113 (2) 0.131 (2) 0.0458 (13) −0.0138 (16) 0.0034 (12) 0.0245 (13)
N2 0.0512 (14) 0.0510 (13) 0.0797 (17) 0.0095 (11) 0.0225 (13) 0.0255 (12)
C2 0.0424 (14) 0.0518 (15) 0.0425 (13) 0.0125 (11) 0.0041 (10) 0.0101 (11)
O2 0.0575 (13) 0.1052 (18) 0.0627 (13) −0.0106 (12) −0.0020 (10) 0.0039 (12)
N3 0.0292 (10) 0.0650 (13) 0.0446 (11) 0.0026 (9) 0.0098 (8) 0.0172 (9)
C3 0.0528 (15) 0.0544 (15) 0.0489 (14) 0.0174 (12) 0.0161 (12) 0.0207 (12)
O3 0.0941 (18) 0.1021 (18) 0.0914 (17) −0.0079 (14) 0.0313 (14) 0.0522 (14)
C4 0.0396 (13) 0.0423 (13) 0.0586 (15) 0.0087 (10) 0.0153 (11) 0.0176 (11)
O4 0.0597 (13) 0.0651 (13) 0.0940 (16) −0.0137 (10) 0.0088 (12) 0.0193 (11)
O5 0.0287 (9) 0.0861 (14) 0.0596 (11) 0.0045 (8) 0.0149 (8) 0.0164 (9)
C5 0.0330 (12) 0.0439 (13) 0.0489 (13) 0.0095 (10) 0.0090 (10) 0.0098 (11)
C6 0.0287 (11) 0.0446 (13) 0.0458 (13) 0.0100 (10) 0.0090 (9) 0.0114 (10)
C7 0.0270 (12) 0.0501 (14) 0.0468 (13) 0.0074 (10) 0.0115 (10) 0.0089 (10)
C8 0.0454 (14) 0.0633 (17) 0.0415 (14) 0.0050 (12) 0.0099 (11) 0.0125 (12)
C9 0.089 (2) 0.0671 (19) 0.0588 (18) 0.0082 (17) 0.0087 (16) 0.0185 (15)

Geometric parameters (Å, °)

C1—C2 1.376 (3) C3—C4 1.380 (4)
C1—C6 1.394 (3) C3—H3B 0.9300
C1—H1A 0.9300 C4—C5 1.375 (3)
N1—O1 1.212 (3) O5—C7 1.232 (3)
N1—O2 1.224 (3) C5—C6 1.392 (3)
N1—C2 1.479 (3) C5—H5A 0.9300
N2—O4 1.214 (3) C6—C7 1.498 (3)
N2—O3 1.214 (3) C8—C9 1.494 (4)
N2—C4 1.477 (3) C8—H8A 0.9700
C2—C3 1.379 (4) C8—H8B 0.9700
N3—C7 1.327 (3) C9—H9A 0.9600
N3—C8 1.454 (3) C9—H9B 0.9600
N3—H3A 0.8600 C9—H9C 0.9600
C2—C1—C6 118.8 (2) C4—C5—C6 119.0 (2)
C2—C1—H1A 120.6 C4—C5—H5A 120.5
C6—C1—H1A 120.6 C6—C5—H5A 120.5
O1—N1—O2 124.6 (2) C5—C6—C1 119.7 (2)
O1—N1—C2 117.6 (2) C5—C6—C7 123.0 (2)
O2—N1—C2 117.8 (2) C1—C6—C7 117.3 (2)
O4—N2—O3 123.4 (2) O5—C7—N3 124.0 (2)
O4—N2—C4 118.2 (2) O5—C7—C6 119.2 (2)
O3—N2—C4 118.4 (3) N3—C7—C6 116.78 (19)
C1—C2—C3 122.9 (2) N3—C8—C9 112.1 (2)
C1—C2—N1 118.7 (2) N3—C8—H8A 109.2
C3—C2—N1 118.5 (2) C9—C8—H8A 109.2
C7—N3—C8 122.68 (19) N3—C8—H8B 109.2
C7—N3—H3A 118.7 C9—C8—H8B 109.2
C8—N3—H3A 118.7 H8A—C8—H8B 107.9
C2—C3—C4 116.8 (2) C8—C9—H9A 109.5
C2—C3—H3B 121.6 C8—C9—H9B 109.5
C4—C3—H3B 121.6 H9A—C9—H9B 109.5
C5—C4—C3 122.7 (2) C8—C9—H9C 109.5
C5—C4—N2 118.9 (2) H9A—C9—H9C 109.5
C3—C4—N2 118.3 (2) H9B—C9—H9C 109.5
C6—C1—C2—C3 −1.3 (4) C3—C4—C5—C6 −1.3 (4)
C6—C1—C2—N1 179.3 (2) N2—C4—C5—C6 179.42 (19)
O1—N1—C2—C1 −170.8 (3) C4—C5—C6—C1 0.9 (3)
O2—N1—C2—C1 8.0 (4) C4—C5—C6—C7 −176.8 (2)
O1—N1—C2—C3 9.8 (4) C2—C1—C6—C5 0.3 (3)
O2—N1—C2—C3 −171.4 (2) C2—C1—C6—C7 178.2 (2)
C1—C2—C3—C4 0.9 (4) C8—N3—C7—O5 3.0 (4)
N1—C2—C3—C4 −179.6 (2) C8—N3—C7—C6 −177.4 (2)
C2—C3—C4—C5 0.4 (4) C5—C6—C7—O5 147.8 (2)
C2—C3—C4—N2 179.7 (2) C1—C6—C7—O5 −30.0 (3)
O4—N2—C4—C5 4.5 (3) C5—C6—C7—N3 −31.9 (3)
O3—N2—C4—C5 −177.4 (2) C1—C6—C7—N3 150.3 (2)
O4—N2—C4—C3 −174.8 (2) C7—N3—C8—C9 90.0 (3)
O3—N2—C4—C3 3.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O5i 0.86 2.13 2.886 (3) 146

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2259).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Lee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358–6361. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100804X/su2259sup1.cif

e-67-0o822-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100804X/su2259Isup2.hkl

e-67-0o822-Isup2.hkl (96.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES