Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o814. doi: 10.1107/S1600536811008026

2,3-Dibromo-3-phenyl-1-(3-phenyl­sydnon-4-yl)propan-1-one

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3099808  PMID: 21754100

Abstract

In the title compound [systematic name: 4-(2,3-dibromo-3-phenyl­propano­yl)-3-phenyl-1,2,3-oxadiazol-3-ylium-5-olate], C17H12Br2N2O3, the oxadiazole ring is essentially planar, with a maximum deviation of 0.001 (3) Å. The central oxadiazole ring makes dihedral angles of 73.3 (2) and 29.0 (2)° with the adjacent and remote phenyl rings, respectively. In the crystal, adjacent mol­ecules are connected by C—H⋯O hydrogen bonds, forming a supra­molecular chain along the c axis. There is an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif.

Related literature

For applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008). For details of chalcones, see: Rai et al. (2007).graphic file with name e-67-0o814-scheme1.jpg

Experimental

Crystal data

  • C17H12Br2N2O3

  • M r = 452.11

  • Monoclinic, Inline graphic

  • a = 11.9109 (3) Å

  • b = 17.5018 (3) Å

  • c = 8.5365 (2) Å

  • β = 94.960 (1)°

  • V = 1772.87 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.59 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.341, T max = 0.849

  • 23853 measured reflections

  • 4082 independent reflections

  • 1912 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.104

  • S = 0.98

  • 4082 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008026/is2684sup1.cif

e-67-0o814-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008026/is2684Isup2.hkl

e-67-0o814-Isup2.hkl (200.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2 0.98 2.35 3.028 (6) 126
C13—H13A⋯O2i 0.93 2.49 3.312 (6) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Sydnones constitute a well-defined class of mesoionic compounds that contain the 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structure and also because of the varied types of biological activities (Rai et al., 2008). Recently, sydnone derivatives were found to exhibit promising anti-microbial properties (Jyothi et al., 2008). Chalcones were obtained by the base-catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in alcoholic medium employing sodium hydroxide as catalyst at 0–5 °C. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones (Rai et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The oxadiazole (N1/N2/O1/C7/C8) ring is essentially planar, with a maximum deviation of 0.001 (3) Å for atom O1. The central oxadiazole (N1/N2/O1/C7/C8) ring makes dihedral angles of 73.3 (2)° and 29.0 (2)° with the attached phenyl (C1–C6) and the terminal phenyl (C12–C17) rings, respectively.

In the crystal, (Fig. 2), the adjacent molecules are connected by intra and intermolecular C10—H10A···O2 and C13—H13A···O2 (Table 1) hydrogen bonds forming supramolecular chains along the c-axis. There is an intramolecular C—H···O hydrogen bond, which generates an S(6) ring motif.

Experimental

1-(31-Phenylsydnon-41-yl)-3-(phenyl)-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (2–30 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was stirred at room temperature for 1-2 hours. The solid which separated was filtered, washed with methanol and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound.

Crystal data

C17H12Br2N2O3 F(000) = 888
Mr = 452.11 Dx = 1.694 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3028 reflections
a = 11.9109 (3) Å θ = 2.3–19.9°
b = 17.5018 (3) Å µ = 4.59 mm1
c = 8.5365 (2) Å T = 296 K
β = 94.960 (1)° Plate, colourless
V = 1772.87 (7) Å3 0.30 × 0.20 × 0.04 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4082 independent reflections
Radiation source: fine-focus sealed tube 1912 reflections with I > 2σ(I)
graphite Rint = 0.068
φ and ω scans θmax = 27.6°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→15
Tmin = 0.341, Tmax = 0.849 k = −22→22
23853 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.6409P] where P = (Fo2 + 2Fc2)/3
4082 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.16038 (4) 1.00790 (2) 0.96635 (6) 0.0826 (2)
Br2 0.24594 (5) 0.75050 (3) 0.96598 (7) 0.1118 (3)
O1 0.0435 (3) 0.92146 (17) 0.4180 (4) 0.0871 (9)
O2 0.2052 (3) 0.94860 (17) 0.5666 (4) 0.0889 (10)
O3 0.0007 (3) 0.8462 (2) 0.9185 (4) 0.0943 (10)
N1 −0.0551 (3) 0.87006 (17) 0.5834 (5) 0.0648 (9)
N2 −0.0581 (4) 0.8894 (2) 0.4355 (5) 0.0855 (11)
C1 −0.1583 (4) 0.7596 (2) 0.6667 (6) 0.0827 (14)
H1A −0.0949 0.7295 0.6565 0.099*
C2 −0.2551 (4) 0.7276 (3) 0.7140 (6) 0.0939 (16)
H2A −0.2574 0.6757 0.7365 0.113*
C3 −0.3477 (5) 0.7719 (3) 0.7279 (6) 0.0957 (16)
H3A −0.4133 0.7502 0.7596 0.115*
C4 −0.3441 (5) 0.8483 (3) 0.6951 (7) 0.1000 (16)
H4A −0.4076 0.8783 0.7048 0.120*
C5 −0.2478 (4) 0.8815 (3) 0.6481 (6) 0.0827 (14)
H5A −0.2452 0.9334 0.6258 0.099*
C6 −0.1562 (4) 0.8357 (2) 0.6350 (5) 0.0639 (11)
C7 0.1121 (5) 0.9216 (2) 0.5614 (6) 0.0722 (12)
C8 0.0427 (4) 0.8868 (2) 0.6687 (5) 0.0615 (11)
C9 0.0669 (4) 0.8733 (2) 0.8348 (6) 0.0695 (12)
C10 0.1842 (4) 0.8990 (2) 0.9026 (6) 0.0768 (13)
H10A 0.2368 0.8972 0.8205 0.092*
C11 0.2311 (4) 0.8574 (3) 1.0407 (6) 0.0820 (13)
H11A 0.1767 0.8585 1.1205 0.098*
C12 0.3433 (4) 0.8850 (2) 1.1137 (6) 0.0664 (11)
C13 0.3544 (4) 0.9064 (2) 1.2683 (6) 0.0800 (13)
H13A 0.2924 0.9042 1.3273 0.096*
C14 0.4564 (6) 0.9312 (3) 1.3369 (7) 0.0982 (17)
H14A 0.4638 0.9446 1.4427 0.118*
C15 0.5474 (5) 0.9361 (3) 1.2496 (9) 0.0971 (17)
H15A 0.6165 0.9531 1.2958 0.116*
C16 0.5364 (4) 0.9164 (3) 1.0977 (8) 0.0981 (17)
H16A 0.5981 0.9207 1.0385 0.118*
C17 0.4361 (4) 0.8899 (3) 1.0275 (6) 0.0888 (14)
H17A 0.4304 0.8754 0.9223 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0582 (3) 0.0681 (3) 0.1219 (5) −0.0028 (2) 0.0096 (3) −0.0066 (3)
Br2 0.1595 (6) 0.0592 (3) 0.1144 (5) −0.0146 (3) −0.0012 (4) −0.0116 (3)
O1 0.106 (3) 0.087 (2) 0.071 (2) −0.0081 (19) 0.022 (2) 0.0099 (17)
O2 0.092 (2) 0.086 (2) 0.095 (3) −0.0176 (18) 0.042 (2) 0.0054 (18)
O3 0.085 (2) 0.131 (3) 0.068 (2) −0.051 (2) 0.0126 (19) 0.005 (2)
N1 0.075 (3) 0.057 (2) 0.063 (3) −0.0025 (18) 0.008 (2) −0.0008 (18)
N2 0.096 (3) 0.091 (3) 0.069 (3) −0.004 (2) 0.005 (3) 0.007 (2)
C1 0.076 (3) 0.061 (3) 0.109 (4) −0.003 (2) −0.005 (3) 0.001 (3)
C2 0.080 (4) 0.069 (3) 0.129 (5) −0.020 (3) −0.011 (3) 0.010 (3)
C3 0.080 (4) 0.098 (4) 0.108 (4) −0.023 (3) 0.003 (3) 0.007 (3)
C4 0.086 (4) 0.091 (4) 0.125 (5) 0.015 (3) 0.024 (3) 0.004 (3)
C5 0.083 (3) 0.065 (3) 0.101 (4) 0.001 (3) 0.013 (3) 0.006 (3)
C6 0.065 (3) 0.061 (3) 0.065 (3) −0.006 (2) 0.000 (2) 0.000 (2)
C7 0.088 (4) 0.055 (3) 0.076 (4) 0.002 (2) 0.021 (3) −0.002 (2)
C8 0.067 (3) 0.064 (2) 0.055 (3) −0.009 (2) 0.014 (3) 0.000 (2)
C9 0.063 (3) 0.074 (3) 0.072 (4) −0.022 (2) 0.012 (3) −0.008 (2)
C10 0.066 (3) 0.087 (3) 0.079 (3) −0.014 (2) 0.017 (3) 0.004 (3)
C11 0.082 (3) 0.083 (3) 0.083 (4) −0.019 (3) 0.015 (3) 0.000 (3)
C12 0.067 (3) 0.068 (3) 0.064 (3) −0.005 (2) 0.009 (3) 0.000 (2)
C13 0.094 (4) 0.067 (3) 0.080 (4) −0.010 (2) 0.017 (3) −0.011 (2)
C14 0.127 (5) 0.081 (3) 0.084 (4) −0.012 (3) −0.006 (4) −0.012 (3)
C15 0.077 (4) 0.078 (3) 0.130 (6) −0.007 (3) −0.025 (4) 0.003 (3)
C16 0.061 (3) 0.116 (4) 0.116 (5) 0.003 (3) 0.001 (4) 0.017 (4)
C17 0.070 (3) 0.115 (4) 0.082 (4) 0.009 (3) 0.014 (3) 0.006 (3)

Geometric parameters (Å, °)

Br1—C10 2.008 (4) C5—H5A 0.9300
Br2—C11 1.990 (5) C7—C8 1.422 (6)
O1—N2 1.354 (5) C8—C9 1.442 (6)
O1—C7 1.411 (5) C9—C10 1.533 (6)
O2—C7 1.203 (5) C10—C11 1.455 (6)
O3—C9 1.206 (5) C10—H10A 0.9800
N1—N2 1.304 (5) C11—C12 1.505 (6)
N1—C8 1.351 (5) C11—H11A 0.9800
N1—C6 1.448 (5) C12—C13 1.367 (6)
C1—C6 1.361 (5) C12—C17 1.382 (6)
C1—C2 1.374 (6) C13—C14 1.372 (7)
C1—H1A 0.9300 C13—H13A 0.9300
C2—C3 1.361 (6) C14—C15 1.370 (7)
C2—H2A 0.9300 C14—H14A 0.9300
C3—C4 1.369 (6) C15—C16 1.338 (7)
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.376 (6) C16—C17 1.370 (7)
C4—H4A 0.9300 C16—H16A 0.9300
C5—C6 1.365 (5) C17—H17A 0.9300
N2—O1—C7 111.2 (4) C8—C9—C10 114.9 (4)
N2—N1—C8 114.6 (4) C11—C10—C9 115.6 (4)
N2—N1—C6 116.6 (4) C11—C10—Br1 108.0 (3)
C8—N1—C6 128.8 (4) C9—C10—Br1 103.6 (3)
N1—N2—O1 105.3 (4) C11—C10—H10A 109.8
C6—C1—C2 119.2 (4) C9—C10—H10A 109.8
C6—C1—H1A 120.4 Br1—C10—H10A 109.8
C2—C1—H1A 120.4 C10—C11—C12 116.1 (4)
C3—C2—C1 120.1 (5) C10—C11—Br2 104.4 (3)
C3—C2—H2A 119.9 C12—C11—Br2 109.5 (3)
C1—C2—H2A 119.9 C10—C11—H11A 108.8
C2—C3—C4 119.9 (5) C12—C11—H11A 108.8
C2—C3—H3A 120.1 Br2—C11—H11A 108.8
C4—C3—H3A 120.1 C13—C12—C17 118.8 (4)
C3—C4—C5 120.9 (5) C13—C12—C11 119.8 (4)
C3—C4—H4A 119.5 C17—C12—C11 121.4 (4)
C5—C4—H4A 119.5 C12—C13—C14 120.4 (5)
C6—C5—C4 118.0 (4) C12—C13—H13A 119.8
C6—C5—H5A 121.0 C14—C13—H13A 119.8
C4—C5—H5A 121.0 C15—C14—C13 120.0 (5)
C1—C6—C5 122.0 (4) C15—C14—H14A 120.0
C1—C6—N1 119.8 (4) C13—C14—H14A 120.0
C5—C6—N1 118.2 (4) C16—C15—C14 119.7 (5)
O2—C7—O1 119.7 (5) C16—C15—H15A 120.2
O2—C7—C8 136.8 (5) C14—C15—H15A 120.2
O1—C7—C8 103.5 (4) C15—C16—C17 121.3 (5)
N1—C8—C7 105.5 (4) C15—C16—H16A 119.3
N1—C8—C9 125.7 (4) C17—C16—H16A 119.3
C7—C8—C9 128.7 (4) C16—C17—C12 119.7 (5)
O3—C9—C8 124.2 (4) C16—C17—H17A 120.2
O3—C9—C10 120.9 (4) C12—C17—H17A 120.2
C8—N1—N2—O1 −0.1 (5) N1—C8—C9—O3 −1.4 (7)
C6—N1—N2—O1 178.4 (3) C7—C8—C9—O3 176.6 (4)
C7—O1—N2—N1 0.1 (4) N1—C8—C9—C10 −179.0 (4)
C6—C1—C2—C3 0.3 (8) C7—C8—C9—C10 −1.1 (6)
C1—C2—C3—C4 −0.2 (8) O3—C9—C10—C11 29.5 (6)
C2—C3—C4—C5 0.0 (8) C8—C9—C10—C11 −152.7 (4)
C3—C4—C5—C6 0.0 (8) O3—C9—C10—Br1 −88.4 (4)
C2—C1—C6—C5 −0.3 (7) C8—C9—C10—Br1 89.4 (4)
C2—C1—C6—N1 −179.3 (4) C9—C10—C11—C12 −176.7 (4)
C4—C5—C6—C1 0.1 (7) Br1—C10—C11—C12 −61.3 (5)
C4—C5—C6—N1 179.1 (4) C9—C10—C11—Br2 62.6 (4)
N2—N1—C6—C1 106.8 (5) Br1—C10—C11—Br2 178.07 (17)
C8—N1—C6—C1 −74.9 (6) C10—C11—C12—C13 123.0 (5)
N2—N1—C6—C5 −72.2 (5) Br2—C11—C12—C13 −119.1 (4)
C8—N1—C6—C5 106.1 (5) C10—C11—C12—C17 −56.4 (6)
N2—O1—C7—O2 −179.6 (4) Br2—C11—C12—C17 61.6 (5)
N2—O1—C7—C8 −0.1 (4) C17—C12—C13—C14 −1.1 (7)
N2—N1—C8—C7 0.0 (5) C11—C12—C13—C14 179.6 (4)
C6—N1—C8—C7 −178.3 (3) C12—C13—C14—C15 1.4 (7)
N2—N1—C8—C9 178.3 (4) C13—C14—C15—C16 −0.3 (8)
C6—N1—C8—C9 0.1 (6) C14—C15—C16—C17 −1.1 (8)
O2—C7—C8—N1 179.3 (5) C15—C16—C17—C12 1.4 (8)
O1—C7—C8—N1 0.1 (4) C13—C12—C17—C16 −0.3 (7)
O2—C7—C8—C9 1.0 (8) C11—C12—C17—C16 179.0 (4)
O1—C7—C8—C9 −178.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O2 0.98 2.35 3.028 (6) 126
C13—H13A···O2i 0.93 2.49 3.312 (6) 147

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2684).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  4. Rai, N. S., Kalluraya, B. & Lingappa, B. (2007). Synth. Commun. 37, 2267–2273.
  5. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008026/is2684sup1.cif

e-67-0o814-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008026/is2684Isup2.hkl

e-67-0o814-Isup2.hkl (200.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES