Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):o896. doi: 10.1107/S1600536811008440

Bis(3,5-dimeth­oxy­phen­yl)phosphinic acid

Wei Cheng a,*, Zhi-Qiang Feng b, Jun-Mei Tang a
PMCID: PMC3099812  PMID: 21754171

Abstract

In the crystal structure of the title compound, C16H19O6P, inter­molecular O—H⋯O inter­actions link the mol­ecules into chains parallel to the b axis. These chains are linked by C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.7307 (29) Å] into a three-dimensional network. The dihedral angle between the benzene rings is 73.5 (1)°. The C and O atoms of all four methoxy groups lie very close to the mean planes of their attached rings; the C atoms are 0.055 (2)–0.1038 (1) Å out of the mean plane of the attached rings.

Related literature

For standard bond lengths, see: Allen et al. (1987). For the synthesis of the title compound, see: Watson et al. (2006).graphic file with name e-67-0o896-scheme1.jpg

Experimental

Crystal data

  • C16H19O6P

  • M r = 338.28

  • Monoclinic, Inline graphic

  • a = 14.554 (3) Å

  • b = 7.7620 (16) Å

  • c = 14.634 (3) Å

  • β = 96.14 (3)°

  • V = 1643.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.944, T max = 0.981

  • 3138 measured reflections

  • 3014 independent reflections

  • 2136 reflections with I > 2σ(I)

  • R int = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.162

  • S = 1.01

  • 3014 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008440/vm2080sup1.cif

e-67-0o896-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008440/vm2080Isup2.hkl

e-67-0o896-Isup2.hkl (147.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.82 1.71 2.482 (3) 155
C14—H14BCg2ii 0.96 2.90 3.571 (4) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for the support.

supplementary crystallographic information

Comment

The title compound, bis(3,5-dimethoxyphenyl)phosphinic acid (I) is an important intermediate for preparing metal phosphine complexes.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The dihedral angle between ring 1 (C1—C6) and ring 2 (C7—C12) is 73.5 (1)°. The P atom is situated close to the best planes through the benzene rings (deviation P of -0.054 (1) and 0.014 (1) Å for ring 1 and 2, respectively).

The C and O atoms of all methoxy groups lie very close to the mean planes of their attached rings. The C13 and C14 atoms of methoxy groups are 0.064 (1) and 0.1038 (1) Å, respectively, out of the C1–C6 mean plane. The C15 and C16 atoms are 0.055 (2) and 0.096 (1) Å, respectively, out of the C7–C8 mean plane.

In the crystal structure, intermolecular O—H···O interactions link the molecules into chains parallel to the b-direction (Table 1, Fig. 2). These chains are linked by C—H···π (Table 1) and π—π interactions [distance Cg1···Cg1ii = 3.7307 (29) Å where Cg1 is the centroid of C1—C6; symmetry code ii: 2 - x,-y,1 - z] to give a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure (Fig. 2).

Experimental

The title compound was synthesized by the reaction of dimethoxyphenyl bromide, t-BuLi, N,N-dimethylphosphoramic dichloride in aqueous HCl and THF (Watson et al., 2006). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (50 mg) in ethyl acetate (10 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93 and 0.96 Å for aromatic and methoxy H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for phenyl H and x = 1.5 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal structure of (I). Dashed lines indicate hydrogen bonds or π—π interactions .

Crystal data

C16H19O6P F(000) = 712
Mr = 338.28 Dx = 1.367 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 14.554 (3) Å θ = 10–14°
b = 7.7620 (16) Å µ = 0.20 mm1
c = 14.634 (3) Å T = 298 K
β = 96.14 (3)° Block, colorless
V = 1643.7 (6) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2136 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
graphite θmax = 25.4°, θmin = 1.9°
ω/2θ scans h = 0→17
Absorption correction: ψ scan (North et al., 1968) k = 0→9
Tmin = 0.944, Tmax = 0.981 l = −17→17
3138 measured reflections 3 standard reflections every 200 reflections
3014 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.095P)2] where P = (Fo2 + 2Fc2)/3
3014 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P 0.84250 (5) 0.16050 (10) 0.25720 (5) 0.0347 (2)
O1 0.83620 (18) −0.2020 (3) 0.55369 (14) 0.0568 (7)
C1 0.84208 (19) −0.0319 (4) 0.41535 (19) 0.0369 (7)
H1A 0.8151 −0.1182 0.3774 0.044*
O2 0.96481 (18) 0.3582 (3) 0.57873 (15) 0.0582 (7)
C2 0.8584 (2) −0.0570 (4) 0.5091 (2) 0.0388 (7)
O3 0.9727 (2) −0.3021 (4) 0.0512 (2) 0.0853 (10)
C3 0.8993 (2) 0.0712 (4) 0.5657 (2) 0.0417 (7)
H3A 0.9099 0.0529 0.6287 0.050*
O4 1.17640 (19) 0.1274 (4) 0.1644 (2) 0.0833 (9)
C4 0.9241 (2) 0.2244 (4) 0.5293 (2) 0.0403 (7)
O5 0.85561 (14) 0.3545 (3) 0.23979 (14) 0.0429 (5)
H5A 0.8125 0.4084 0.2577 0.064*
C5 0.9083 (2) 0.2521 (4) 0.4345 (2) 0.0397 (7)
H5B 0.9256 0.3556 0.4093 0.048*
O6 0.74981 (14) 0.0893 (3) 0.22249 (13) 0.0432 (5)
C6 0.86672 (19) 0.1244 (4) 0.37875 (19) 0.0342 (7)
C7 0.9317 (2) 0.0648 (4) 0.19870 (19) 0.0388 (7)
C8 1.0195 (2) 0.1405 (4) 0.2072 (2) 0.0482 (8)
H8A 1.0313 0.2393 0.2424 0.058*
C9 1.0885 (2) 0.0655 (5) 0.1622 (2) 0.0570 (9)
C10 1.0691 (3) −0.0832 (5) 0.1110 (3) 0.0669 (11)
H10A 1.1156 −0.1346 0.0816 0.080*
C11 0.9820 (3) −0.1564 (5) 0.1027 (2) 0.0577 (9)
C12 0.9129 (2) −0.0827 (4) 0.1475 (2) 0.0469 (8)
H12A 0.8544 −0.1320 0.1431 0.056*
C13 0.7992 (3) −0.3423 (4) 0.5002 (2) 0.0583 (9)
H13A 0.7871 −0.4362 0.5399 0.087*
H13B 0.8426 −0.3782 0.4591 0.087*
H13C 0.7426 −0.3076 0.4653 0.087*
C14 0.9762 (3) 0.3417 (5) 0.6759 (2) 0.0683 (11)
H14A 1.0051 0.4436 0.7026 0.102*
H14B 1.0143 0.2434 0.6929 0.102*
H14C 0.9169 0.3269 0.6979 0.102*
C15 0.8843 (4) −0.3867 (6) 0.0433 (3) 0.0889 (15)
H15A 0.8867 −0.4879 0.0059 0.133*
H15B 0.8379 −0.3097 0.0154 0.133*
H15C 0.8695 −0.4190 0.1033 0.133*
C16 1.1963 (3) 0.2843 (7) 0.2119 (4) 0.0937 (16)
H16A 1.2597 0.3150 0.2083 0.141*
H16B 1.1859 0.2707 0.2752 0.141*
H16C 1.1569 0.3736 0.1845 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P 0.0339 (4) 0.0366 (4) 0.0325 (4) 0.0010 (3) −0.0014 (3) 0.0043 (3)
O1 0.0837 (18) 0.0470 (14) 0.0378 (12) −0.0164 (12) −0.0022 (11) 0.0083 (10)
C1 0.0355 (15) 0.0396 (16) 0.0347 (15) −0.0025 (13) −0.0010 (12) −0.0011 (13)
O2 0.0813 (17) 0.0495 (14) 0.0405 (12) −0.0168 (13) −0.0085 (11) −0.0039 (11)
C2 0.0410 (17) 0.0379 (17) 0.0370 (16) −0.0002 (14) 0.0009 (13) 0.0034 (13)
O3 0.106 (2) 0.0688 (19) 0.088 (2) −0.0052 (17) 0.0441 (18) −0.0322 (16)
C3 0.0444 (17) 0.0488 (19) 0.0308 (15) 0.0022 (15) −0.0016 (13) 0.0010 (14)
O4 0.0547 (16) 0.099 (2) 0.102 (2) −0.0111 (16) 0.0322 (15) −0.0187 (19)
C4 0.0409 (17) 0.0399 (17) 0.0384 (16) −0.0004 (14) −0.0039 (13) −0.0040 (14)
O5 0.0405 (12) 0.0402 (12) 0.0480 (12) 0.0013 (10) 0.0044 (9) 0.0060 (10)
C5 0.0435 (17) 0.0362 (17) 0.0386 (16) −0.0003 (14) 0.0014 (13) 0.0027 (14)
O6 0.0406 (12) 0.0478 (13) 0.0391 (11) −0.0042 (10) −0.0060 (9) 0.0079 (10)
C6 0.0290 (15) 0.0383 (16) 0.0345 (15) 0.0030 (12) −0.0002 (12) −0.0010 (13)
C7 0.0448 (18) 0.0412 (17) 0.0302 (15) 0.0056 (14) 0.0025 (13) 0.0041 (13)
C8 0.0483 (19) 0.054 (2) 0.0426 (17) −0.0002 (16) 0.0067 (15) −0.0035 (15)
C9 0.049 (2) 0.070 (2) 0.055 (2) 0.0012 (18) 0.0166 (16) 0.0011 (19)
C10 0.071 (3) 0.069 (3) 0.066 (2) 0.009 (2) 0.031 (2) −0.004 (2)
C11 0.079 (3) 0.053 (2) 0.0446 (19) 0.003 (2) 0.0201 (18) −0.0024 (17)
C12 0.052 (2) 0.0481 (19) 0.0411 (17) 0.0011 (16) 0.0081 (15) 0.0012 (16)
C13 0.077 (3) 0.047 (2) 0.051 (2) −0.0154 (19) 0.0073 (18) 0.0025 (17)
C14 0.096 (3) 0.066 (3) 0.0411 (19) −0.021 (2) −0.0045 (19) −0.0060 (19)
C15 0.118 (4) 0.065 (3) 0.086 (3) −0.017 (3) 0.024 (3) −0.025 (2)
C16 0.062 (3) 0.121 (4) 0.103 (4) −0.027 (3) 0.030 (3) −0.020 (3)

Geometric parameters (Å, °)

P—O6 1.496 (2) C7—C12 1.379 (4)
P—O5 1.542 (2) C7—C8 1.400 (4)
P—C7 1.791 (3) C8—C9 1.387 (5)
P—C6 1.798 (3) C8—H8A 0.9300
O1—C2 1.357 (4) C9—C10 1.389 (5)
O1—C13 1.414 (4) C10—C11 1.383 (5)
C1—C2 1.381 (4) C10—H10A 0.9300
C1—C6 1.389 (4) C11—C12 1.381 (5)
C1—H1A 0.9300 C12—H12A 0.9300
O2—C4 1.365 (4) C13—H13A 0.9600
O2—C14 1.419 (4) C13—H13B 0.9600
C2—C3 1.388 (4) C13—H13C 0.9600
O3—C11 1.358 (4) C14—H14A 0.9600
O3—C15 1.437 (5) C14—H14B 0.9600
C3—C4 1.367 (4) C14—H14C 0.9600
C3—H3A 0.9300 C15—H15A 0.9600
O4—C9 1.363 (4) C15—H15B 0.9600
O4—C16 1.417 (5) C15—H15C 0.9600
C4—C5 1.397 (4) C16—H16A 0.9600
O5—H5A 0.8200 C16—H16B 0.9600
C5—C6 1.382 (4) C16—H16C 0.9600
C5—H5B 0.9300
O6—P—O5 115.32 (12) O4—C9—C10 116.3 (3)
O6—P—C7 110.96 (14) C8—C9—C10 119.2 (3)
O5—P—C7 102.55 (13) C11—C10—C9 121.4 (3)
O6—P—C6 110.65 (13) C11—C10—H10A 119.3
O5—P—C6 107.51 (13) C9—C10—H10A 119.3
C7—P—C6 109.45 (13) O3—C11—C12 125.0 (4)
C2—O1—C13 117.9 (2) O3—C11—C10 115.3 (3)
C2—C1—C6 118.9 (3) C12—C11—C10 119.7 (3)
C2—C1—H1A 120.6 C7—C12—C11 119.3 (3)
C6—C1—H1A 120.6 C7—C12—H12A 120.3
C4—O2—C14 117.4 (3) C11—C12—H12A 120.3
O1—C2—C1 124.8 (3) O1—C13—H13A 109.5
O1—C2—C3 114.6 (3) O1—C13—H13B 109.5
C1—C2—C3 120.6 (3) H13A—C13—H13B 109.5
C11—O3—C15 117.4 (3) O1—C13—H13C 109.5
C4—C3—C2 120.4 (3) H13A—C13—H13C 109.5
C4—C3—H3A 119.8 H13B—C13—H13C 109.5
C2—C3—H3A 119.8 O2—C14—H14A 109.5
C9—O4—C16 117.2 (3) O2—C14—H14B 109.5
O2—C4—C3 124.9 (3) H14A—C14—H14B 109.5
O2—C4—C5 115.2 (3) O2—C14—H14C 109.5
C3—C4—C5 119.9 (3) H14A—C14—H14C 109.5
P—O5—H5A 109.5 H14B—C14—H14C 109.5
C6—C5—C4 119.4 (3) O3—C15—H15A 109.5
C6—C5—H5B 120.3 O3—C15—H15B 109.5
C4—C5—H5B 120.3 H15A—C15—H15B 109.5
C5—C6—C1 120.9 (3) O3—C15—H15C 109.5
C5—C6—P 120.0 (2) H15A—C15—H15C 109.5
C1—C6—P 119.1 (2) H15B—C15—H15C 109.5
C12—C7—C8 121.5 (3) O4—C16—H16A 109.5
C12—C7—P 119.5 (2) O4—C16—H16B 109.5
C8—C7—P 119.0 (2) H16A—C16—H16B 109.5
C9—C8—C7 118.9 (3) O4—C16—H16C 109.5
C9—C8—H8A 120.6 H16A—C16—H16C 109.5
C7—C8—H8A 120.6 H16B—C16—H16C 109.5
O4—C9—C8 124.5 (4)
C13—O1—C2—C1 4.3 (5) O6—P—C7—C12 −14.6 (3)
C13—O1—C2—C3 −176.4 (3) O5—P—C7—C12 −138.3 (2)
C6—C1—C2—O1 178.8 (3) C6—P—C7—C12 107.8 (3)
C6—C1—C2—C3 −0.5 (4) O6—P—C7—C8 166.3 (2)
O1—C2—C3—C4 −179.4 (3) O5—P—C7—C8 42.6 (3)
C1—C2—C3—C4 0.0 (5) C6—P—C7—C8 −71.3 (3)
C14—O2—C4—C3 −4.7 (5) C12—C7—C8—C9 0.6 (5)
C14—O2—C4—C5 175.5 (3) P—C7—C8—C9 179.7 (2)
C2—C3—C4—O2 −179.9 (3) C16—O4—C9—C8 −3.7 (6)
C2—C3—C4—C5 −0.1 (5) C16—O4—C9—C10 176.5 (4)
O2—C4—C5—C6 −179.5 (3) C7—C8—C9—O4 179.5 (3)
C3—C4—C5—C6 0.7 (5) C7—C8—C9—C10 −0.7 (5)
C4—C5—C6—C1 −1.2 (4) O4—C9—C10—C11 −179.1 (4)
C4—C5—C6—P 178.0 (2) C8—C9—C10—C11 1.0 (6)
C2—C1—C6—C5 1.1 (4) C15—O3—C11—C12 −0.6 (6)
C2—C1—C6—P −178.1 (2) C15—O3—C11—C10 177.8 (4)
O6—P—C6—C5 −139.0 (2) C9—C10—C11—O3 −179.6 (3)
O5—P—C6—C5 −12.2 (3) C9—C10—C11—C12 −1.2 (6)
C7—P—C6—C5 98.4 (3) C8—C7—C12—C11 −0.7 (5)
O6—P—C6—C1 40.2 (3) P—C7—C12—C11 −179.8 (2)
O5—P—C6—C1 167.0 (2) O3—C11—C12—C7 179.2 (3)
C7—P—C6—C1 −82.3 (2) C10—C11—C12—C7 1.0 (5)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 ring.
D—H···A D—H H···A D···A D—H···A
O5—H5A···O6i 0.82 1.71 2.482 (3) 155
C14—H14B···Cg2ii 0.96 2.90 3.571 (4) 128

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2080).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Watson, D. A., Chiu, M. & Bergman, R. G. (2006). Organometallics, 25, 4731–4733. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008440/vm2080sup1.cif

e-67-0o896-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008440/vm2080Isup2.hkl

e-67-0o896-Isup2.hkl (147.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES