Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):o1020. doi: 10.1107/S1600536811011342

3-Chloro-6-[2-(cyclo­pentyl­idene)hydrazin-1-yl]pyridazine

Abdul Qayyum Ather a,b, M Nawaz Tahir c,*, Misbahul Ain Khan a, Muhammad Makshoof Athar d
PMCID: PMC3099815  PMID: 21754036

Abstract

The asymmetric unit of the title compound, C9H11ClN4, contains two virtually planar mol­ecules that differ in conformation about the bond connecting the hydrazine and pyridazine units. The 3-chloro-6-hydrazinylpyridazine and cyclo­pentane groups are oriented at dihedral angles of 4.5 (3) and 8.8 (4)° in the two mol­ecules. In the crystal, the mol­ecules form a one dimensional polymeric structure extending along the a axis via N—H⋯N hydrogen bonds. The crystal stucired was an inversion twin [ratio of the twin domains = 0.73 (9):0.27 (9)].

Related literature

For related structures, see: Ather et al. (2010a,b,c ). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-o1020-scheme1.jpg

Experimental

Crystal data

  • C9H11ClN4

  • M r = 210.67

  • Orthorhombic, Inline graphic

  • a = 10.180 (5) Å

  • b = 9.870 (5) Å

  • c = 20.049 (3) Å

  • V = 2014.5 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.30 × 0.15 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.942, T max = 0.950

  • 7740 measured reflections

  • 3355 independent reflections

  • 2130 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.120

  • S = 1.00

  • 3355 reflections

  • 254 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 1307 Friedel pairs

  • Flack parameter: 0.73 (9)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011342/gk2360sup1.cif

e-67-o1020-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011342/gk2360Isup2.hkl

e-67-o1020-Isup2.hkl (161.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N5i 0.86 2.52 3.295 (5) 150
N3—H3A⋯N6i 0.86 2.27 3.088 (5) 159
N7—H7⋯N1ii 0.86 2.19 3.041 (5) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

In continuation to on our studies on 3-chloro-6-hydrazinylpyridazine derivatives (Ather et al., 2010a,b,c), the title compound (Fig. 1) is being reported here.

There are two symmetry independent molecule in the asymmetric unit of title compound that differ in conformation. In one molecule 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) and cyclopentane group B (C5–C9) are planar with r. m. s. deviations of 0.0104 and 0.0354 Å. The dihedral angle between A/B is 8.5 (4)°. In the second symmetry independent molecule 3-chloro-6-hydrazinylpyridazine moiety C (C10—C13/N5—N8/CL2) and cyclopentane gruop D (C14–C18) are also planar with r. m. s. deviations of 0.0068 and 0.0046 Å. The dihedral angle between C/D is 4.5 (3)°. The title compound consists of one dimensional polymeric chains via N–H···N hydrogen bonds extending along the crystallographic a-axis (Table 1, Fig. 2).

Experimental

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol), dissolved in ethanol (10 ml) and refluxed for 15 min. Cyclopentanone (0.291 g, 3.459 mmol) was added to the formar solution and refluxed about 3 h, till the completion of reaction monitored through TLC. On completion of the reaction mixture was concenterated under vacuum. The crude product was recrystallized in ethanol which yielded the light yellow needles of the title compound.

Refinement

The structure was refined as an inversion twin with 0.73 (9):0.27((9) ratio of the twin domains. The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The partial packing diagram (PLATON; Spek, 2009) showing polymeric chains extending along the a-axis. The H-atoms of cyclopentane are omitted for clarity.

Crystal data

C9H11ClN4 F(000) = 880
Mr = 210.67 Dx = 1.389 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1374 reflections
a = 10.180 (5) Å θ = 2.9–28.3°
b = 9.870 (5) Å µ = 0.34 mm1
c = 20.049 (3) Å T = 296 K
V = 2014.5 (15) Å3 Needle, light yellow
Z = 8 0.30 × 0.15 × 0.14 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3355 independent reflections
Radiation source: fine-focus sealed tube 2130 reflections with I > 2σ(I)
graphite Rint = 0.044
Detector resolution: 7.60 pixels mm-1 θmax = 26.0°, θmin = 2.9°
ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→11
Tmin = 0.942, Tmax = 0.950 l = −24→19
7740 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3355 reflections Δρmax = 0.18 e Å3
254 parameters Δρmin = −0.17 e Å3
1 restraint Absolute structure: Flack (1983), 1307 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.73 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.05268 (12) −0.05719 (13) 0.64742 (7) 0.0730 (4)
N1 0.2266 (4) −0.1211 (3) 0.5585 (2) 0.0563 (10)
N2 0.3221 (4) −0.1007 (3) 0.5124 (2) 0.0540 (10)
N3 0.4576 (4) 0.0479 (3) 0.4564 (2) 0.0564 (10)
H3A 0.4848 0.1290 0.4488 0.068*
N4 0.5125 (4) −0.0589 (3) 0.4229 (2) 0.0576 (10)
C1 0.3608 (4) 0.0263 (4) 0.5012 (2) 0.0403 (10)
C2 0.3031 (4) 0.1383 (4) 0.5338 (2) 0.0495 (11)
H2 0.3302 0.2261 0.5240 0.059*
C3 0.2085 (4) 0.1165 (4) 0.5791 (2) 0.0489 (12)
H3 0.1686 0.1871 0.6022 0.059*
C4 0.1736 (4) −0.0193 (4) 0.5896 (2) 0.0490 (12)
C5 0.5972 (5) −0.0292 (4) 0.3777 (3) 0.0553 (12)
C6 0.6610 (5) −0.1391 (5) 0.3385 (3) 0.0860 (17)
H6A 0.7147 −0.1958 0.3671 0.103*
H6B 0.5955 −0.1954 0.3169 0.103*
C7 0.7435 (8) −0.0690 (6) 0.2881 (4) 0.112 (3)
H7A 0.8349 −0.0934 0.2945 0.134*
H7B 0.7175 −0.0972 0.2436 0.134*
C8 0.7283 (7) 0.0760 (6) 0.2945 (4) 0.101 (2)
H8A 0.6859 0.1125 0.2551 0.121*
H8B 0.8137 0.1187 0.2991 0.121*
C9 0.6450 (4) 0.1042 (4) 0.3559 (2) 0.0574 (12)
H9A 0.6972 0.1466 0.3906 0.069*
H9B 0.5720 0.1634 0.3449 0.069*
Cl2 0.72267 (11) 0.48307 (11) −0.15057 (7) 0.0678 (4)
N5 0.5643 (3) 0.6264 (3) −0.07810 (19) 0.0544 (10)
N6 0.4710 (3) 0.6489 (3) −0.03214 (19) 0.0512 (9)
N7 0.3193 (3) 0.5761 (3) 0.04280 (19) 0.0527 (10)
H7 0.2969 0.6590 0.0495 0.063*
N8 0.2597 (4) 0.4729 (3) 0.0777 (2) 0.0555 (11)
C10 0.4144 (4) 0.5451 (4) −0.0025 (2) 0.0444 (11)
C11 0.4524 (4) 0.4099 (4) −0.0162 (2) 0.0471 (11)
H11 0.4124 0.3377 0.0057 0.056*
C12 0.5459 (4) 0.3885 (4) −0.0607 (2) 0.0466 (11)
H12 0.5744 0.3014 −0.0710 0.056*
C13 0.6001 (4) 0.5023 (4) −0.0916 (2) 0.0464 (11)
C14 0.1787 (4) 0.5052 (4) 0.1230 (3) 0.0533 (12)
C15 0.1343 (4) 0.6416 (4) 0.1458 (3) 0.0658 (12)
H15A 0.0928 0.6908 0.1096 0.079*
H15B 0.2080 0.6943 0.1622 0.079*
C16 0.0371 (6) 0.6142 (7) 0.2012 (3) 0.105 (2)
H16A 0.0666 0.6569 0.2421 0.125*
H16B −0.0480 0.6515 0.1896 0.125*
C17 0.0264 (7) 0.4674 (7) 0.2109 (4) 0.095 (2)
H17A 0.0509 0.4442 0.2562 0.114*
H17B −0.0637 0.4389 0.2038 0.114*
C18 0.1122 (5) 0.3979 (5) 0.1643 (3) 0.0870 (19)
H18A 0.0617 0.3377 0.1359 0.104*
H18B 0.1770 0.3446 0.1882 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0700 (7) 0.0779 (9) 0.0711 (9) −0.0235 (6) 0.0072 (8) 0.0036 (8)
N1 0.068 (3) 0.0344 (19) 0.067 (3) −0.0143 (19) 0.000 (2) −0.0021 (19)
N2 0.069 (2) 0.0250 (17) 0.068 (3) −0.0104 (17) −0.008 (2) −0.0068 (17)
N3 0.077 (3) 0.0236 (18) 0.068 (3) −0.0011 (16) 0.011 (2) −0.0014 (18)
N4 0.070 (3) 0.034 (2) 0.068 (3) 0.0026 (17) 0.005 (2) −0.0077 (19)
C1 0.050 (3) 0.029 (2) 0.042 (3) −0.0022 (17) −0.005 (2) −0.0016 (18)
C2 0.065 (3) 0.026 (2) 0.057 (3) 0.000 (2) 0.003 (3) 0.0006 (19)
C3 0.057 (3) 0.032 (2) 0.058 (3) 0.005 (2) −0.006 (3) −0.0003 (19)
C4 0.050 (3) 0.046 (3) 0.052 (3) −0.014 (2) −0.010 (2) 0.005 (2)
C5 0.065 (3) 0.039 (3) 0.062 (3) 0.008 (2) 0.003 (3) −0.002 (2)
C6 0.100 (4) 0.048 (3) 0.110 (5) 0.008 (3) 0.035 (4) −0.016 (3)
C7 0.149 (7) 0.072 (4) 0.114 (6) 0.012 (4) 0.069 (5) −0.006 (4)
C8 0.117 (6) 0.069 (4) 0.119 (6) 0.008 (3) 0.056 (5) 0.010 (4)
C9 0.069 (3) 0.051 (3) 0.053 (3) −0.003 (2) 0.007 (3) 0.000 (2)
Cl2 0.0699 (7) 0.0664 (8) 0.0672 (8) −0.0042 (6) 0.0083 (7) −0.0049 (7)
N5 0.066 (3) 0.035 (2) 0.063 (3) −0.0066 (17) −0.002 (2) 0.0023 (17)
N6 0.061 (2) 0.0271 (18) 0.066 (2) −0.0021 (16) 0.001 (2) −0.0045 (17)
N7 0.061 (2) 0.0283 (18) 0.069 (3) 0.0018 (17) 0.006 (2) −0.0037 (18)
N8 0.063 (2) 0.033 (2) 0.070 (3) −0.0065 (18) 0.010 (2) 0.0003 (18)
C10 0.053 (3) 0.028 (2) 0.052 (3) 0.0021 (18) −0.005 (2) −0.001 (2)
C11 0.055 (3) 0.025 (2) 0.062 (3) −0.0033 (18) 0.001 (3) 0.003 (2)
C12 0.055 (3) 0.026 (2) 0.058 (3) −0.0014 (19) −0.004 (3) −0.0035 (19)
C13 0.052 (2) 0.039 (2) 0.048 (3) −0.002 (2) −0.008 (2) −0.002 (2)
C14 0.056 (3) 0.045 (3) 0.059 (3) −0.001 (2) 0.002 (3) −0.004 (2)
C15 0.071 (3) 0.056 (3) 0.071 (3) 0.005 (2) 0.001 (3) −0.015 (3)
C16 0.121 (5) 0.075 (5) 0.117 (6) 0.010 (4) 0.041 (5) −0.012 (4)
C17 0.108 (5) 0.097 (5) 0.079 (5) 0.003 (4) 0.017 (4) −0.008 (4)
C18 0.105 (4) 0.057 (3) 0.098 (5) −0.006 (3) 0.044 (4) 0.006 (3)

Geometric parameters (Å, °)

Cl1—C4 1.732 (5) Cl2—C13 1.730 (5)
N1—C4 1.299 (5) N5—C13 1.306 (5)
N1—N2 1.357 (5) N5—N6 1.342 (5)
N2—C1 1.333 (5) N6—C10 1.317 (5)
N3—C1 1.351 (5) N7—C10 1.362 (5)
N3—N4 1.370 (5) N7—N8 1.377 (5)
N3—H3A 0.8600 N7—H7 0.8600
N4—C5 1.285 (6) N8—C14 1.268 (5)
C1—C2 1.413 (5) C10—C11 1.416 (5)
C2—C3 1.341 (6) C11—C12 1.322 (6)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.402 (6) C12—C13 1.397 (6)
C3—H3 0.9300 C12—H12 0.9300
C5—C9 1.470 (6) C14—C15 1.492 (6)
C5—C6 1.489 (6) C14—C18 1.504 (7)
C6—C7 1.485 (8) C15—C16 1.511 (7)
C6—H6A 0.9700 C15—H15A 0.9700
C6—H6B 0.9700 C15—H15B 0.9700
C7—C8 1.445 (7) C16—C17 1.466 (9)
C7—H7A 0.9700 C16—H16A 0.9700
C7—H7B 0.9700 C16—H16B 0.9700
C8—C9 1.522 (8) C17—C18 1.452 (8)
C8—H8A 0.9700 C17—H17A 0.9700
C8—H8B 0.9700 C17—H17B 0.9700
C9—H9A 0.9700 C18—H18A 0.9700
C9—H9B 0.9700 C18—H18B 0.9700
C4—N1—N2 120.7 (4) C13—N5—N6 119.6 (3)
C1—N2—N1 117.7 (3) C10—N6—N5 119.4 (3)
C1—N3—N4 120.1 (3) C10—N7—N8 119.1 (3)
C1—N3—H3A 119.9 C10—N7—H7 120.5
N4—N3—H3A 119.9 N8—N7—H7 120.5
C5—N4—N3 116.3 (4) C14—N8—N7 117.7 (4)
N2—C1—N3 118.4 (3) N6—C10—N7 115.9 (4)
N2—C1—C2 122.4 (4) N6—C10—C11 121.7 (4)
N3—C1—C2 119.2 (4) N7—C10—C11 122.3 (4)
C3—C2—C1 119.1 (4) C12—C11—C10 118.6 (4)
C3—C2—H2 120.5 C12—C11—H11 120.7
C1—C2—H2 120.5 C10—C11—H11 120.7
C2—C3—C4 115.9 (4) C11—C12—C13 117.1 (4)
C2—C3—H3 122.0 C11—C12—H12 121.5
C4—C3—H3 122.0 C13—C12—H12 121.5
N1—C4—C3 124.2 (4) N5—C13—C12 123.5 (4)
N1—C4—Cl1 116.7 (3) N5—C13—Cl2 116.5 (3)
C3—C4—Cl1 119.1 (4) C12—C13—Cl2 120.0 (3)
N4—C5—C9 129.5 (4) N8—C14—C15 130.1 (4)
N4—C5—C6 119.9 (4) N8—C14—C18 120.6 (4)
C9—C5—C6 110.6 (4) C15—C14—C18 109.3 (4)
C7—C6—C5 105.4 (4) C14—C15—C16 105.2 (4)
C7—C6—H6A 110.7 C14—C15—H15A 110.7
C5—C6—H6A 110.7 C16—C15—H15A 110.7
C7—C6—H6B 110.7 C14—C15—H15B 110.7
C5—C6—H6B 110.7 C16—C15—H15B 110.7
H6A—C6—H6B 108.8 H15A—C15—H15B 108.8
C8—C7—C6 109.9 (5) C17—C16—C15 108.9 (5)
C8—C7—H7A 109.7 C17—C16—H16A 109.9
C6—C7—H7A 109.7 C15—C16—H16A 109.9
C8—C7—H7B 109.7 C17—C16—H16B 109.9
C6—C7—H7B 109.7 C15—C16—H16B 109.9
H7A—C7—H7B 108.2 H16A—C16—H16B 108.3
C7—C8—C9 108.2 (5) C18—C17—C16 109.7 (5)
C7—C8—H8A 110.1 C18—C17—H17A 109.7
C9—C8—H8A 110.1 C16—C17—H17A 109.7
C7—C8—H8B 110.1 C18—C17—H17B 109.7
C9—C8—H8B 110.1 C16—C17—H17B 109.7
H8A—C8—H8B 108.4 H17A—C17—H17B 108.2
C5—C9—C8 105.1 (4) C17—C18—C14 107.0 (5)
C5—C9—H9A 110.7 C17—C18—H18A 110.3
C8—C9—H9A 110.7 C14—C18—H18A 110.3
C5—C9—H9B 110.7 C17—C18—H18B 110.3
C8—C9—H9B 110.7 C14—C18—H18B 110.3
H9A—C9—H9B 108.8 H18A—C18—H18B 108.6
C4—N1—N2—C1 1.3 (6) C13—N5—N6—C10 −1.8 (6)
C1—N3—N4—C5 175.2 (4) C10—N7—N8—C14 174.9 (4)
N1—N2—C1—N3 178.8 (4) N5—N6—C10—N7 −179.1 (3)
N1—N2—C1—C2 −2.2 (6) N5—N6—C10—C11 2.2 (6)
N4—N3—C1—N2 0.8 (6) N8—N7—C10—N6 −177.4 (4)
N4—N3—C1—C2 −178.2 (4) N8—N7—C10—C11 1.4 (6)
N2—C1—C2—C3 2.1 (6) N6—C10—C11—C12 −1.0 (6)
N3—C1—C2—C3 −178.9 (4) N7—C10—C11—C12 −179.7 (4)
C1—C2—C3—C4 −0.9 (6) C10—C11—C12—C13 −0.4 (6)
N2—N1—C4—C3 −0.1 (6) N6—N5—C13—C12 0.2 (6)
N2—N1—C4—Cl1 −180.0 (3) N6—N5—C13—Cl2 −179.1 (3)
C2—C3—C4—N1 0.0 (6) C11—C12—C13—N5 0.9 (6)
C2—C3—C4—Cl1 179.8 (3) C11—C12—C13—Cl2 −179.8 (3)
N3—N4—C5—C9 −0.2 (7) N7—N8—C14—C15 0.4 (7)
N3—N4—C5—C6 −179.5 (4) N7—N8—C14—C18 −178.5 (4)
N4—C5—C6—C7 175.6 (6) N8—C14—C15—C16 179.9 (5)
C9—C5—C6—C7 −3.9 (7) C18—C14—C15—C16 −1.1 (6)
C5—C6—C7—C8 −1.7 (8) C14—C15—C16—C17 0.7 (6)
C6—C7—C8—C9 6.3 (9) C15—C16—C17—C18 0.0 (8)
N4—C5—C9—C8 −171.9 (6) C16—C17—C18—C14 −0.6 (7)
C6—C5—C9—C8 7.5 (6) N8—C14—C18—C17 −179.8 (5)
C7—C8—C9—C5 −8.4 (7) C15—C14—C18—C17 1.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···N5i 0.93 2.73 3.500 (6) 141
N3—H3A···N5i 0.86 2.52 3.295 (5) 150
N3—H3A···N6i 0.86 2.27 3.088 (5) 159
N7—H7···N1ii 0.86 2.19 3.041 (5) 170
C12—H12···N4iii 0.93 2.55 3.323 (5) 140

Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1/2, y+1, z−1/2; (iii) −x+1, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2360).

References

  1. Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o2107. [DOI] [PMC free article] [PubMed]
  2. Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o2441. [DOI] [PMC free article] [PubMed]
  3. Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010c). Acta Cryst. E66, o2499. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011342/gk2360sup1.cif

e-67-o1020-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011342/gk2360Isup2.hkl

e-67-o1020-Isup2.hkl (161.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES