Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):o1004. doi: 10.1107/S1600536811010798

4-({[4-Amino-6-(p-bromo­benz­yl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfan­yl}acet­yl)-3-phenyl­sydnone

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3099816  PMID: 21754025

Abstract

In the title compound, C20H15BrN6O4S [symstematic name: 4-({[4-amino-6-(p-bromo­benz­yl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfan­yl}acet­yl)-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate], the 4,5-dihydro-1,2,4-triazine ring is essentially planar [maximum deviation = 0.020 (1) Å] and is inclined at dihedral angles of 89.06 (9), 82.21 (8) and 83.98 (8)° with respect to the oxadiazol-3-ium, phenyl and benzene rings. The oxadiazol-3-ium ring forms dihedral angles of 52.71 (9) and 8.77 (9)°, respectively, with the phenyl and benzene rings. In the crystal, the mol­ecules are linked via pairs of inter­molecular N—H⋯O hydrogen bonds, generating R 2 2(10) ring motifs and are further linked via inter­molecular N—H⋯N and weak C—H⋯O hydrogen bonds into infinite columns along [100].

Related literature

For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008); Jyothi et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1004-scheme1.jpg

Experimental

Crystal data

  • C20H15BrN6O4S

  • M r = 515.35

  • Triclinic, Inline graphic

  • a = 6.3842 (3) Å

  • b = 10.0832 (5) Å

  • c = 17.1563 (8) Å

  • α = 104.873 (1)°

  • β = 93.507 (1)°

  • γ = 98.189 (1)°

  • V = 1050.99 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 100 K

  • 0.32 × 0.26 × 0.06 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.553, T max = 0.892

  • 21938 measured reflections

  • 6161 independent reflections

  • 5241 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.089

  • S = 1.03

  • 6161 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010798/lh5224sup1.cif

e-67-o1004-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010798/lh5224Isup2.hkl

e-67-o1004-Isup2.hkl (301.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H1N6⋯N3i 0.81 (3) 2.47 (3) 2.9835 (19) 123 (2)
N6—H1N6⋯N4i 0.81 (3) 2.40 (3) 3.050 (2) 138 (3)
N6—H2N6⋯O4ii 0.86 (3) 2.15 (3) 2.989 (2) 164 (2)
C14—H14B⋯O3iii 0.97 2.50 3.416 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Sydnones are mesoionic heterocyclic aromatic chemical compounds. The study of sydnones remains as a field of interest because of their electronic structures and varied types of biological activities (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Jyothi et al., 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the mesoionic nature of the sydnone ring promotes significant interactions with biological systems. Photochemical bromination of 3-aryl-4-acetylsydnone affords 3-aryl-4 bromoacetylsydnones. Condensation of 4-amino-6-(4-bromobenzyl)-3- sulfanyl-1,2,4-triazin-5(4H)-one with 3-aryl-4-bromoacetylsydnones yields S-substituted triazinone derivatives (Jyothi et al., 2008).

The molecular structure is shown in Fig. 1. The 4,5-dihydro-1,2,4-triazine ring (N3-N5/C11-C13) is essentially planar [maximum deviation = 0.020 (1) Å at atom N5] and is inclined at angles of 89.06 (9), 82.21 (8) and 83.98 (8) ° with respect to the oxadiazol-3-ium (O1/N1/N2/C7/C8) phenyl (C1-C6) and benzene (C15-C20) rings. The dihedral angles between oxadiazol-3-ium ring (O1/N1/N2/C7/C8) and the phenyl and benzene rings (C1-C6 and C15-C20) are 52.71 (9) and 8.77 (9)°, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal (Fig. 2), the molecules are linked via pairs of intermolecular N6–H2N6···O4ii hydrogen bonds (Table 1), generating R22(10) ring motifs (Bernstein et al., 1995) and are further linked via intermolecular N6–H1N6···N3i, N6–H1N6···N4i and weak C14–H14B···O3iii hydrogen bonds (Table 1) into infinite one-dimensional columns along [100].

Experimental

To a solution of 4-bromoacetyl-3-phenylsydnone (0.01 mol) and 4-amino-6-(4-bromobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

H1N6 and H2N6 were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.88 Å from Br1 and the deepest hole is located at 0.72 Å from Br1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C20H15BrN6O4S Z = 2
Mr = 515.35 F(000) = 520
Triclinic, P1 Dx = 1.628 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.3842 (3) Å Cell parameters from 8506 reflections
b = 10.0832 (5) Å θ = 2.5–30.1°
c = 17.1563 (8) Å µ = 2.10 mm1
α = 104.873 (1)° T = 100 K
β = 93.507 (1)° Plate, colourless
γ = 98.189 (1)° 0.32 × 0.26 × 0.06 mm
V = 1050.99 (9) Å3

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 6161 independent reflections
Radiation source: fine-focus sealed tube 5241 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 30.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→8
Tmin = 0.553, Tmax = 0.892 k = −14→14
21938 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.5765P] where P = (Fo2 + 2Fc2)/3
6161 reflections (Δ/σ)max = 0.001
297 parameters Δρmax = 0.95 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.14494 (4) 0.177407 (19) −0.446529 (11) 0.02915 (7)
S1 0.25040 (6) 0.42973 (4) 0.10384 (3) 0.01811 (9)
O1 −0.50655 (19) 0.68942 (12) 0.23590 (8) 0.0188 (2)
O2 −0.2801 (2) 0.71471 (13) 0.14077 (8) 0.0208 (3)
O3 −0.0592 (2) 0.36960 (13) 0.21831 (8) 0.0220 (3)
O4 0.3090 (2) −0.01318 (13) −0.08910 (8) 0.0205 (3)
N1 −0.3930 (2) 0.52932 (14) 0.27862 (9) 0.0149 (3)
N2 −0.5387 (2) 0.60958 (15) 0.28897 (9) 0.0186 (3)
N3 −0.0707 (2) 0.26436 (15) 0.00189 (9) 0.0170 (3)
N4 −0.1524 (2) 0.14792 (15) −0.06048 (9) 0.0181 (3)
N5 0.2602 (2) 0.18642 (14) 0.00230 (9) 0.0143 (3)
N6 0.4749 (2) 0.22357 (17) 0.03542 (11) 0.0206 (3)
C1 −0.2106 (3) 0.44195 (17) 0.37978 (11) 0.0196 (3)
H1A −0.0839 0.4967 0.3756 0.024*
C2 −0.2207 (3) 0.36200 (19) 0.43441 (11) 0.0238 (4)
H2A −0.0994 0.3628 0.4675 0.029*
C3 −0.4115 (3) 0.28031 (19) 0.44025 (12) 0.0259 (4)
H3A −0.4172 0.2280 0.4777 0.031*
C4 −0.5930 (3) 0.2768 (2) 0.39032 (12) 0.0248 (4)
H4A −0.7196 0.2214 0.3940 0.030*
C5 −0.5857 (3) 0.35610 (18) 0.33486 (11) 0.0200 (3)
H5A −0.7060 0.3541 0.3009 0.024*
C6 −0.3950 (3) 0.43812 (16) 0.33132 (10) 0.0159 (3)
C7 −0.3307 (3) 0.65627 (16) 0.19113 (10) 0.0158 (3)
C8 −0.2595 (3) 0.54977 (16) 0.22188 (10) 0.0147 (3)
C9 −0.0958 (3) 0.46663 (16) 0.19248 (10) 0.0155 (3)
C10 0.0227 (3) 0.51392 (17) 0.12772 (11) 0.0171 (3)
H10A 0.0694 0.6137 0.1461 0.021*
H10B −0.0740 0.4948 0.0789 0.021*
C11 0.1283 (2) 0.28045 (16) 0.02926 (10) 0.0140 (3)
C12 −0.0334 (3) 0.05691 (17) −0.09056 (10) 0.0155 (3)
C13 0.1916 (3) 0.06871 (16) −0.06161 (10) 0.0150 (3)
C14 −0.1255 (3) −0.06046 (17) −0.16342 (11) 0.0186 (3)
H14A −0.2789 −0.0807 −0.1640 0.022*
H14B −0.0672 −0.1437 −0.1621 0.022*
C15 −0.0681 (3) −0.01499 (16) −0.23796 (10) 0.0169 (3)
C16 −0.1898 (3) 0.07165 (18) −0.26599 (11) 0.0204 (3)
H16A −0.3123 0.0922 −0.2421 0.024*
C17 −0.1300 (3) 0.12721 (18) −0.32900 (11) 0.0229 (4)
H17A −0.2116 0.1841 −0.3479 0.027*
C18 0.0541 (3) 0.09602 (17) −0.36308 (11) 0.0204 (3)
C19 0.1758 (3) 0.00851 (18) −0.33787 (11) 0.0208 (3)
H19A 0.2972 −0.0125 −0.3625 0.025*
C20 0.1132 (3) −0.04737 (17) −0.27502 (11) 0.0191 (3)
H20A 0.1929 −0.1067 −0.2577 0.023*
H1N6 0.538 (4) 0.226 (3) −0.0038 (17) 0.032 (7)*
H2N6 0.512 (4) 0.153 (3) 0.0487 (14) 0.021 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.04790 (14) 0.02057 (9) 0.01944 (10) 0.00057 (8) 0.00410 (8) 0.00878 (7)
S1 0.01188 (18) 0.01887 (18) 0.0231 (2) 0.00468 (14) 0.00303 (15) 0.00339 (15)
O1 0.0194 (6) 0.0176 (5) 0.0236 (6) 0.0084 (4) 0.0060 (5) 0.0094 (5)
O2 0.0218 (6) 0.0192 (6) 0.0270 (7) 0.0074 (5) 0.0063 (5) 0.0132 (5)
O3 0.0233 (6) 0.0210 (6) 0.0275 (7) 0.0115 (5) 0.0070 (5) 0.0118 (5)
O4 0.0215 (6) 0.0212 (6) 0.0228 (6) 0.0122 (5) 0.0050 (5) 0.0075 (5)
N1 0.0147 (6) 0.0137 (6) 0.0175 (7) 0.0047 (5) 0.0021 (5) 0.0048 (5)
N2 0.0192 (7) 0.0186 (6) 0.0221 (7) 0.0086 (5) 0.0057 (6) 0.0088 (5)
N3 0.0129 (6) 0.0191 (6) 0.0196 (7) 0.0047 (5) 0.0035 (5) 0.0046 (5)
N4 0.0138 (6) 0.0205 (6) 0.0205 (7) 0.0030 (5) 0.0039 (5) 0.0060 (5)
N5 0.0105 (6) 0.0176 (6) 0.0183 (7) 0.0064 (5) 0.0035 (5) 0.0080 (5)
N6 0.0103 (6) 0.0258 (7) 0.0270 (8) 0.0081 (5) 0.0019 (6) 0.0064 (6)
C1 0.0211 (8) 0.0175 (7) 0.0207 (8) 0.0038 (6) 0.0011 (6) 0.0057 (6)
C2 0.0283 (9) 0.0234 (8) 0.0210 (8) 0.0065 (7) −0.0025 (7) 0.0080 (7)
C3 0.0376 (11) 0.0219 (8) 0.0211 (9) 0.0050 (7) 0.0044 (8) 0.0106 (7)
C4 0.0277 (9) 0.0236 (8) 0.0236 (9) −0.0007 (7) 0.0056 (7) 0.0093 (7)
C5 0.0203 (8) 0.0199 (7) 0.0205 (8) 0.0027 (6) 0.0028 (6) 0.0069 (6)
C6 0.0197 (8) 0.0137 (6) 0.0162 (7) 0.0049 (6) 0.0032 (6) 0.0061 (6)
C7 0.0139 (7) 0.0136 (6) 0.0207 (8) 0.0041 (5) 0.0028 (6) 0.0049 (6)
C8 0.0146 (7) 0.0135 (6) 0.0178 (7) 0.0045 (5) 0.0032 (6) 0.0058 (6)
C9 0.0140 (7) 0.0148 (7) 0.0178 (8) 0.0048 (5) 0.0014 (6) 0.0033 (6)
C10 0.0150 (7) 0.0164 (7) 0.0222 (8) 0.0066 (6) 0.0047 (6) 0.0062 (6)
C11 0.0131 (7) 0.0158 (7) 0.0162 (7) 0.0061 (5) 0.0059 (5) 0.0070 (6)
C12 0.0155 (7) 0.0175 (7) 0.0167 (7) 0.0032 (6) 0.0049 (6) 0.0094 (6)
C13 0.0168 (7) 0.0166 (7) 0.0161 (7) 0.0062 (6) 0.0050 (6) 0.0101 (6)
C14 0.0190 (8) 0.0161 (7) 0.0219 (8) 0.0021 (6) 0.0040 (6) 0.0071 (6)
C15 0.0190 (8) 0.0143 (7) 0.0177 (8) 0.0038 (6) 0.0005 (6) 0.0044 (6)
C16 0.0215 (8) 0.0188 (7) 0.0221 (8) 0.0086 (6) 0.0019 (6) 0.0047 (6)
C17 0.0310 (9) 0.0177 (7) 0.0216 (8) 0.0094 (7) −0.0017 (7) 0.0062 (6)
C18 0.0301 (9) 0.0150 (7) 0.0158 (8) 0.0018 (6) 0.0018 (7) 0.0047 (6)
C19 0.0219 (8) 0.0216 (8) 0.0201 (8) 0.0059 (6) 0.0055 (7) 0.0056 (6)
C20 0.0217 (8) 0.0176 (7) 0.0203 (8) 0.0078 (6) 0.0021 (6) 0.0068 (6)

Geometric parameters (Å, °)

Br1—C18 1.9049 (18) C3—H3A 0.9300
S1—C11 1.7508 (17) C4—C5 1.390 (3)
S1—C10 1.8020 (16) C4—H4A 0.9300
O1—N2 1.3680 (19) C5—C6 1.385 (2)
O1—C7 1.429 (2) C5—H5A 0.9300
O2—C7 1.200 (2) C7—C8 1.428 (2)
O3—C9 1.218 (2) C8—C9 1.465 (2)
O4—C13 1.2187 (19) C9—C10 1.519 (2)
N1—N2 1.3088 (19) C10—H10A 0.9700
N1—C8 1.368 (2) C10—H10B 0.9700
N1—C6 1.445 (2) C12—C13 1.469 (2)
N3—C11 1.300 (2) C12—C14 1.504 (2)
N3—N4 1.381 (2) C14—C15 1.514 (2)
N4—C12 1.300 (2) C14—H14A 0.9700
N5—C11 1.3680 (19) C14—H14B 0.9700
N5—C13 1.389 (2) C15—C20 1.393 (2)
N5—N6 1.4112 (19) C15—C16 1.401 (2)
N6—H1N6 0.81 (3) C16—C17 1.389 (3)
N6—H2N6 0.86 (3) C16—H16A 0.9300
C1—C2 1.383 (3) C17—C18 1.384 (3)
C1—C6 1.389 (2) C17—H17A 0.9300
C1—H1A 0.9300 C18—C19 1.386 (2)
C2—C3 1.394 (3) C19—C20 1.393 (3)
C2—H2A 0.9300 C19—H19A 0.9300
C3—C4 1.389 (3) C20—H20A 0.9300
C11—S1—C10 99.93 (8) C8—C9—C10 113.52 (13)
N2—O1—C7 110.81 (12) C9—C10—S1 112.99 (11)
N2—N1—C8 114.46 (14) C9—C10—H10A 109.0
N2—N1—C6 114.57 (14) S1—C10—H10A 109.0
C8—N1—C6 130.92 (14) C9—C10—H10B 109.0
N1—N2—O1 105.56 (13) S1—C10—H10B 109.0
C11—N3—N4 118.15 (13) H10A—C10—H10B 107.8
C12—N4—N3 120.73 (14) N3—C11—N5 124.05 (15)
C11—N5—C13 121.19 (13) N3—C11—S1 121.47 (12)
C11—N5—N6 116.73 (13) N5—C11—S1 114.47 (12)
C13—N5—N6 121.61 (13) N4—C12—C13 123.59 (15)
N5—N6—H1N6 103.2 (19) N4—C12—C14 118.19 (15)
N5—N6—H2N6 107.7 (15) C13—C12—C14 118.02 (14)
H1N6—N6—H2N6 103 (2) O4—C13—N5 122.36 (15)
C2—C1—C6 118.14 (17) O4—C13—C12 125.46 (16)
C2—C1—H1A 120.9 N5—C13—C12 112.17 (13)
C6—C1—H1A 120.9 C12—C14—C15 107.41 (13)
C1—C2—C3 120.50 (17) C12—C14—H14A 110.2
C1—C2—H2A 119.8 C15—C14—H14A 110.2
C3—C2—H2A 119.8 C12—C14—H14B 110.2
C4—C3—C2 120.25 (18) C15—C14—H14B 110.2
C4—C3—H3A 119.9 H14A—C14—H14B 108.5
C2—C3—H3A 119.9 C20—C15—C16 119.23 (16)
C3—C4—C5 120.06 (18) C20—C15—C14 121.51 (15)
C3—C4—H4A 120.0 C16—C15—C14 119.03 (15)
C5—C4—H4A 120.0 C17—C16—C15 120.87 (17)
C6—C5—C4 118.46 (17) C17—C16—H16A 119.6
C6—C5—H5A 120.8 C15—C16—H16A 119.6
C4—C5—H5A 120.8 C18—C17—C16 118.47 (16)
C5—C6—C1 122.58 (16) C18—C17—H17A 120.8
C5—C6—N1 118.14 (15) C16—C17—H17A 120.8
C1—C6—N1 119.16 (15) C17—C18—C19 122.11 (17)
O2—C7—C8 136.11 (16) C17—C18—Br1 119.06 (14)
O2—C7—O1 120.39 (14) C19—C18—Br1 118.83 (14)
C8—C7—O1 103.49 (14) C18—C19—C20 118.84 (16)
N1—C8—C7 105.67 (13) C18—C19—H19A 120.6
N1—C8—C9 126.27 (14) C20—C19—H19A 120.6
C7—C8—C9 127.67 (15) C19—C20—C15 120.45 (16)
O3—C9—C8 122.63 (16) C19—C20—H20A 119.8
O3—C9—C10 123.85 (15) C15—C20—H20A 119.8
C8—N1—N2—O1 0.65 (18) N4—N3—C11—N5 −2.7 (2)
C6—N1—N2—O1 178.30 (13) N4—N3—C11—S1 176.05 (12)
C7—O1—N2—N1 −0.32 (17) C13—N5—C11—N3 4.4 (2)
C11—N3—N4—C12 0.3 (2) N6—N5—C11—N3 176.67 (16)
C6—C1—C2—C3 −0.1 (3) C13—N5—C11—S1 −174.36 (12)
C1—C2—C3—C4 0.9 (3) N6—N5—C11—S1 −2.14 (19)
C2—C3—C4—C5 −0.7 (3) C10—S1—C11—N3 6.15 (16)
C3—C4—C5—C6 −0.4 (3) C10—S1—C11—N5 −175.02 (12)
C4—C5—C6—C1 1.3 (3) N3—N4—C12—C13 0.4 (2)
C4—C5—C6—N1 −174.73 (16) N3—N4—C12—C14 −174.35 (15)
C2—C1—C6—C5 −1.1 (3) C11—N5—C13—O4 176.57 (15)
C2—C1—C6—N1 174.91 (15) N6—N5—C13—O4 4.7 (2)
N2—N1—C6—C5 51.6 (2) C11—N5—C13—C12 −3.4 (2)
C8—N1—C6—C5 −131.18 (18) N6—N5—C13—C12 −175.22 (15)
N2—N1—C6—C1 −124.54 (17) N4—C12—C13—O4 −178.76 (17)
C8—N1—C6—C1 52.6 (2) C14—C12—C13—O4 −4.1 (2)
N2—O1—C7—O2 179.06 (15) N4—C12—C13—N5 1.2 (2)
N2—O1—C7—C8 −0.09 (17) C14—C12—C13—N5 175.89 (14)
N2—N1—C8—C7 −0.71 (19) N4—C12—C14—C15 92.39 (18)
C6—N1—C8—C7 −177.89 (16) C13—C12—C14—C15 −82.61 (17)
N2—N1—C8—C9 −173.89 (15) C12—C14—C15—C20 93.65 (18)
C6—N1—C8—C9 8.9 (3) C12—C14—C15—C16 −80.78 (19)
O2—C7—C8—N1 −178.5 (2) C20—C15—C16—C17 −1.1 (3)
O1—C7—C8—N1 0.44 (17) C14—C15—C16—C17 173.41 (16)
O2—C7—C8—C9 −5.4 (3) C15—C16—C17—C18 −0.6 (3)
O1—C7—C8—C9 173.50 (15) C16—C17—C18—C19 1.9 (3)
N1—C8—C9—O3 −1.7 (3) C16—C17—C18—Br1 −177.44 (13)
C7—C8—C9—O3 −173.40 (16) C17—C18—C19—C20 −1.4 (3)
N1—C8—C9—C10 178.64 (15) Br1—C18—C19—C20 177.91 (13)
C7—C8—C9—C10 6.9 (2) C18—C19—C20—C15 −0.4 (3)
O3—C9—C10—S1 −9.0 (2) C16—C15—C20—C19 1.6 (3)
C8—C9—C10—S1 170.66 (11) C14—C15—C20—C19 −172.79 (16)
C11—S1—C10—C9 87.24 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N6—H1N6···N3i 0.81 (3) 2.47 (3) 2.9835 (19) 123 (2)
N6—H1N6···N4i 0.81 (3) 2.40 (3) 3.050 (2) 138 (3)
N6—H2N6···O4ii 0.86 (3) 2.15 (3) 2.989 (2) 164 (2)
C14—H14B···O3iii 0.97 2.50 3.416 (2) 157

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5224).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  6. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem, 43, 1715–1720. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010798/lh5224sup1.cif

e-67-o1004-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010798/lh5224Isup2.hkl

e-67-o1004-Isup2.hkl (301.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES