Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 23;67(Pt 4):o957. doi: 10.1107/S1600536811010014

8-Nitro­quinoline

Liang Xu a, Bao-Li Xu a, Shu-Jun Lu a, Bing Wang a, Ting-Guo Kang a,*
PMCID: PMC3099818  PMID: 21754222

Abstract

The molecule of the title compound, C9H6N2O2, is almost planar, with a dihedral angle of 3.0 (9)° between the pyridine and benzene rings.

Related literature

For the first synthesis of 8-nitro­quinoline, see: Königs (1879). The crystal studied was synthesised according to the method of Yale & Bernstein (1948). For the pharmacological activity of quinoline derivatives, see: Franck et al. (2004); Zouhiri et al. (2005). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-0o957-scheme1.jpg

Experimental

Crystal data

  • C9H6N2O2

  • M r = 174.16

  • Monoclinic, Inline graphic

  • a = 7.2421 (11) Å

  • b = 16.688 (3) Å

  • c = 7.2089 (11) Å

  • β = 114.086 (4)°

  • V = 795.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.40 × 0.32 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 10084 measured reflections

  • 2287 independent reflections

  • 1827 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.147

  • S = 1.03

  • 2287 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010014/hg5010sup1.cif

e-67-0o957-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010014/hg5010Isup2.hkl

e-67-0o957-Isup2.hkl (112.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Liaoning University of Traditional Chinese Medicine for supporting this study (No. YXRC0920).

supplementary crystallographic information

Comment

8-Nitroquinoline was first synthesized in 1879 (Königs 1879) and in recent years the quinoline and quinoline derivatives have been found to possess a broad spectrum of pharmacological ativity (Franck et al.., 2004, Zouhiri et al., 2005). However, the crytal structure of 8-Nitroquinoline has not been reported so far. Knowledge of the crystal structure of 8-Nitroquinoline gives us not only information about nuclearity of the complex molecule, but is important in understanding the behaviour of this compounds in the vapour phase, and the mechanisms of sublimation and decomposition. Therefore, we have synthesized the title compound, (I), and report its crystal structure here (Fig. 1).

The bond lengths for (I) are within normal ranges (Allen et al., 1987). The molecule is almost flat, with a dihedral angle of 3.0 (9)° between the pyridine and benzene rings.

Experimental

The title compound, (I), was prepared according to the literature procedure of Yale & Bernstein (1948). A mixture of 6.96 g(50 mmol) of o-Nitrophenol and 14.2 g(100 mmol) of arsenic acid in 50 ml of 86% phosphoric acid was placed in a 250 ml, 3-necked flask fitted with a thermometer, dropping funnel, reflux condenser and magnetic stirrer. The reaction mixture was warmed to 100°C and 4.75 ml(75 mmol) of acrolein added dropwise with vigorous stirring. After all the acrolein had been added, the reaction mixture was stirred for an additional thirty minutes during which time the temperature was maintained at 100°C by warming with an oil bath. The solution was poured into 200 ml of water, treated with Hyflo Supercel and decolorizing carbon and filtered. The filtrate was made alkaline with aqueous ammonia and the precipitated product filtered. The dried solid was refluxed with 150 ml of ethyl acetate and decolorizing carbon,filtered, and concentrated until crystallization started. The product weighed 5.05 g(58% yield). Crystals suitable for X-ray data collection were obtained by recrystallization from dichloromethane–hexane (1:1 v/v).

Refinement

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, C—H=0.93 for phenyl H atoms, with Uiso(H) = 1.2Ueq(C) for phenyl H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).

Crystal data

C9H6N2O2 F(000) = 360
Mr = 174.16 Dx = 1.454 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3873 reflections
a = 7.2421 (11) Å θ = 3.1–30.0°
b = 16.688 (3) Å µ = 0.11 mm1
c = 7.2089 (11) Å T = 296 K
β = 114.086 (4)° Block, yellow
V = 795.4 (2) Å3 0.40 × 0.32 × 0.25 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1827 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
graphite θmax = 30.0°, θmin = 3.1°
φ and ω scans h = −9→10
10084 measured reflections k = −23→21
2287 independent reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.1053P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2287 reflections Δρmax = 0.27 e Å3
119 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.133 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C6 0.25070 (14) 0.69710 (6) 0.26068 (13) 0.0354 (2)
C1 0.25541 (15) 0.61239 (7) 0.26308 (15) 0.0380 (2)
N1 0.41946 (14) 0.73928 (6) 0.28382 (15) 0.0454 (3)
C5 0.06270 (16) 0.73360 (7) 0.22521 (16) 0.0422 (3)
N2 0.44722 (15) 0.57111 (6) 0.30592 (16) 0.0467 (3)
C4 −0.10800 (18) 0.68516 (9) 0.1935 (2) 0.0554 (3)
H4 −0.2304 0.7092 0.1738 0.066*
C2 0.08895 (19) 0.56627 (8) 0.2262 (2) 0.0502 (3)
H2 0.0973 0.5107 0.2241 0.060*
C9 0.0561 (2) 0.81833 (8) 0.21989 (19) 0.0560 (3)
H9 −0.0634 0.8452 0.1985 0.067*
C7 0.4030 (2) 0.81781 (8) 0.27567 (19) 0.0547 (3)
H7 0.5169 0.8474 0.2905 0.066*
C3 −0.09546 (19) 0.60401 (9) 0.1914 (2) 0.0595 (4)
H3 −0.2101 0.5732 0.1668 0.071*
O1 0.59089 (14) 0.58621 (7) 0.46328 (17) 0.0659 (3)
C8 0.2259 (2) 0.86002 (8) 0.2462 (2) 0.0600 (4)
H8 0.2248 0.9157 0.2448 0.072*
O2 0.45132 (17) 0.52226 (7) 0.18178 (19) 0.0742 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C6 0.0357 (5) 0.0374 (5) 0.0308 (4) −0.0003 (3) 0.0114 (4) 0.0008 (3)
C1 0.0358 (5) 0.0380 (5) 0.0407 (5) 0.0011 (3) 0.0162 (4) 0.0008 (4)
N1 0.0429 (5) 0.0451 (5) 0.0466 (5) −0.0068 (4) 0.0167 (4) 0.0050 (4)
C5 0.0399 (5) 0.0452 (6) 0.0362 (5) 0.0056 (4) 0.0101 (4) −0.0023 (4)
N2 0.0459 (5) 0.0398 (5) 0.0594 (6) 0.0052 (4) 0.0266 (4) 0.0074 (4)
C4 0.0334 (5) 0.0679 (8) 0.0594 (7) 0.0041 (5) 0.0132 (5) −0.0067 (6)
C2 0.0494 (6) 0.0408 (6) 0.0602 (7) −0.0091 (4) 0.0222 (5) −0.0052 (5)
C9 0.0630 (8) 0.0481 (7) 0.0494 (6) 0.0180 (5) 0.0154 (5) −0.0001 (5)
C7 0.0633 (8) 0.0454 (7) 0.0502 (6) −0.0134 (5) 0.0180 (6) 0.0035 (5)
C3 0.0374 (6) 0.0663 (8) 0.0721 (8) −0.0153 (5) 0.0196 (6) −0.0101 (6)
O1 0.0438 (5) 0.0715 (7) 0.0714 (7) 0.0104 (4) 0.0123 (5) 0.0066 (5)
C8 0.0829 (10) 0.0361 (6) 0.0523 (7) 0.0008 (6) 0.0187 (7) 0.0013 (4)
O2 0.0783 (7) 0.0651 (7) 0.0898 (8) 0.0166 (5) 0.0451 (6) −0.0117 (5)

Geometric parameters (Å, °)

C6—N1 1.3604 (14) C4—C3 1.358 (2)
C6—C1 1.4140 (15) C4—H4 0.9300
C6—C5 1.4163 (14) C2—C3 1.4035 (19)
C1—C2 1.3619 (16) C2—H2 0.9300
C1—N2 1.4661 (14) C9—C8 1.357 (2)
N1—C7 1.3151 (17) C9—H9 0.9300
C5—C9 1.4148 (18) C7—C8 1.401 (2)
C5—C4 1.4154 (18) C7—H7 0.9300
N2—O1 1.2122 (14) C3—H3 0.9300
N2—O2 1.2198 (15) C8—H8 0.9300
N1—C6—C1 119.99 (9) C1—C2—C3 118.90 (12)
N1—C6—C5 123.30 (10) C1—C2—H2 120.6
C1—C6—C5 116.66 (9) C3—C2—H2 120.5
C2—C1—C6 123.20 (10) C8—C9—C5 119.35 (12)
C2—C1—N2 117.57 (10) C8—C9—H9 120.3
C6—C1—N2 119.23 (9) C5—C9—H9 120.3
C7—N1—C6 116.71 (10) N1—C7—C8 124.64 (12)
C9—C5—C4 123.30 (11) N1—C7—H7 117.7
C9—C5—C6 116.99 (11) C8—C7—H7 117.7
C4—C5—C6 119.70 (11) C4—C3—C2 120.57 (11)
O1—N2—O2 123.84 (11) C4—C3—H3 119.7
O1—N2—C1 118.49 (10) C2—C3—H3 119.7
O2—N2—C1 117.65 (11) C9—C8—C7 118.98 (12)
C3—C4—C5 120.90 (11) C9—C8—H8 120.5
C3—C4—H4 119.6 C7—C8—H8 120.5
C5—C4—H4 119.6
N1—C6—C1—C2 −175.08 (10) C6—C1—N2—O2 −124.71 (12)
C5—C6—C1—C2 2.42 (15) C9—C5—C4—C3 177.10 (13)
N1—C6—C1—N2 4.57 (14) C6—C5—C4—C3 −1.69 (19)
C5—C6—C1—N2 −177.94 (9) C6—C1—C2—C3 −2.46 (18)
C1—C6—N1—C7 178.58 (9) N2—C1—C2—C3 177.89 (11)
C5—C6—N1—C7 1.26 (15) C4—C5—C9—C8 −178.13 (12)
N1—C6—C5—C9 −1.77 (15) C6—C5—C9—C8 0.68 (17)
C1—C6—C5—C9 −179.18 (9) C6—N1—C7—C8 0.35 (18)
N1—C6—C5—C4 177.09 (10) C5—C4—C3—C2 1.7 (2)
C1—C6—C5—C4 −0.32 (15) C1—C2—C3—C4 0.3 (2)
C2—C1—N2—O1 −123.73 (13) C5—C9—C8—C7 0.76 (19)
C6—C1—N2—O1 56.60 (14) N1—C7—C8—C9 −1.4 (2)
C2—C1—N2—O2 54.95 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5010).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Franck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635–3638. [DOI] [PubMed]
  5. Königs, W. (1879). Chem. Ber. 12, 448–451.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yale, H. L. & Bernstein, J. (1948). J. Am. Chem. Soc. 70, 254–254. [DOI] [PubMed]
  8. Zouhiri, F., Danet, M., Benard, C., Normand-Bayle, M., Mouscadet, J. F., Leh, H., Thomas, C. M., Mbemba, G., D’Angelo, J. & Desmaele, D. (2005). Tetrahedron Lett. 46, 2201–2205.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010014/hg5010sup1.cif

e-67-0o957-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010014/hg5010Isup2.hkl

e-67-0o957-Isup2.hkl (112.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES