Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):m431. doi: 10.1107/S160053681100849X

meso-[5,10,15,20-Tetra­kis(4-cyano­phen­yl)porphyrinato]zinc

Shuai Dong a, Jianzhuang Jiang a,*
PMCID: PMC3099819  PMID: 21753956

Abstract

In the title compound, [Zn(C48H24N8)], the coordination environment of the Zn2+ ion (site symmetry Inline graphic) is octa­hedral, with four indole N atoms forming the equatorial plane and the axial positions being occupied by N atoms from the cyanide groups of neighbouring molecules. In the crystal, adjacent mol­ecules are assembled into a two-dimensional supra­molecular framework parallel to (Inline graphic01) via the coodination bonding. Topology analysis reveals this compound to be a (4,4)-connected network.

Related literature

For background to the use of porphyrins and derivatives, see: Jiang & Ng (2009). For the use of their metal complexes as catalysts, see: Chen et al. (2004). For Zn—N bond lengths in other Zn(II) porphyrin species, see: Muniappan et al. (2006). For the synthesis of the ligand, see: Kumar et al. (1998).graphic file with name e-67-0m431-scheme1.jpg

Experimental

Crystal data

  • [Zn(C48H24N8)]

  • M r = 778.12

  • Monoclinic, Inline graphic

  • a = 9.7373 (10) Å

  • b = 9.4468 (10) Å

  • c = 21.280 (2) Å

  • β = 101.229 (2)°

  • V = 1920.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 295 K

  • 0.30 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995) T min = 0.726, T max = 0.967

  • 9272 measured reflections

  • 3376 independent reflections

  • 2610 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.05

  • 3376 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100849X/jh2269sup1.cif

e-67-0m431-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100849X/jh2269Isup2.hkl

e-67-0m431-Isup2.hkl (162.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China.

supplementary crystallographic information

Comment

Porphyrins and derivatives have been an important class of dyes and pigments with extensive applications in the paints, printing, and textile industries ever since last century (Jiang & Ng, 2009). Their metal complexes are well known catalysts for numerous chemical reactions (Chen et al., 2004). Therefore, it is worthy to prepare corresponding metal complex.

As shown in Fig.1, compound I is a mononuclear neutral complex with a two-dimensional supramolecular configuration. Each Zn(II) atom is octa-coordinated completed by four indole nitrogen atoms and two nitrogen atoms of cyanogen groups. The bond length is in line with the distances of Zn—N in other Zn(II) porphyrin species (Muniappan et al., 2006). The neighboring Zn(TCPP) molecules are connected via the coodination bonding, forming a two-dimensional supramolecular network. The Zn(II) ion is treated as a node, this compound is a (4,4)-connected network, Figure 2.

Experimental

The H2TCPP ligand was synthesized according to the previous literature(Kumar et al., 1998). The synthesis method of the compound I was obtained by allowing the mixure of Zn(OAc)2 (0.02 g, 0.1 mmol) and H2TCPP (0.072 g, 0.1 mmol), and 15 mL DMF was sealed in 25 ml Teflon-lined stainless steel reactor, which was heated to 110°C. Purple block-shaped crystals suitable for X-ray diffraction analysis were separated by filtration with the yield of 35%.

Refinement

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms and C—H = 0.96 Å.

Figures

Fig. 1.

Fig. 1.

A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, hydrogen atoms are omited for clarity.

Fig. 2.

Fig. 2.

A view of two-dimensional supramolecular configuration of (I).

Crystal data

[Zn(C48H24N8)] F(000) = 796
Mr = 778.12 Dx = 1.346 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2737 reflections
a = 9.7373 (10) Å θ = 2.4–25.3°
b = 9.4468 (10) Å µ = 0.69 mm1
c = 21.280 (2) Å T = 295 K
β = 101.229 (2)° Needle, purple
V = 1920.0 (3) Å3 0.30 × 0.05 × 0.05 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3376 independent reflections
Radiation source: fine-focus sealed tube 2610 reflections with I > 2σ(I)
graphite Rint = 0.028
Detector resolution: 0 pixels mm-1 θmax = 25.0°, θmin = 2.0°
ω scans h = −10→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) k = −11→11
Tmin = 0.726, Tmax = 0.967 l = −22→25
9272 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3654P] where P = (Fo2 + 2Fc2)/3
3376 reflections (Δ/σ)max = 0.001
259 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 1.0000 0.0000 1.0000 0.03997 (16)
N2 0.9529 (2) 0.0662 (2) 1.08533 (8) 0.0377 (5)
C5 1.0664 (3) −0.1265 (3) 1.15417 (10) 0.0382 (6)
C10 0.8349 (2) 0.2917 (3) 1.04962 (11) 0.0379 (6)
N1 1.0918 (2) −0.1781 (2) 1.04326 (8) 0.0370 (5)
C4 1.1139 (3) −0.2084 (3) 1.10731 (11) 0.0388 (6)
C16 1.0114 (3) −0.2648 (3) 1.24674 (12) 0.0565 (7)
H16 0.9250 −0.2874 1.2216 0.068*
C13 1.2649 (3) −0.1964 (3) 1.32212 (13) 0.0590 (8)
H13 1.3505 −0.1722 1.3475 0.071*
C9 0.8856 (3) 0.1885 (3) 1.09594 (11) 0.0399 (6)
C14 1.1741 (3) −0.2811 (3) 1.34609 (11) 0.0487 (7)
C18 0.6411 (3) 0.3997 (3) 1.09533 (13) 0.0508 (7)
H18 0.6022 0.3099 1.0958 0.061*
C11 1.1027 (3) −0.1798 (3) 1.22180 (10) 0.0390 (6)
N3 1.2522 (4) −0.3731 (3) 1.46169 (12) 0.0859 (9)
C20 0.6318 (3) 0.6457 (3) 1.11635 (13) 0.0542 (7)
C8 0.8808 (3) 0.1975 (3) 1.16333 (12) 0.0516 (7)
H8 0.8407 0.2701 1.1832 0.062*
C12 1.2296 (3) −0.1464 (3) 1.26005 (12) 0.0535 (7)
H12 1.2924 −0.0895 1.2439 0.064*
C23 0.7632 (3) 0.4171 (3) 1.07089 (11) 0.0397 (6)
C21 0.7496 (3) 0.6674 (3) 1.09048 (12) 0.0539 (7)
H21 0.7846 0.7584 1.0880 0.065*
C6 0.9912 (3) −0.0002 (2) 1.14336 (11) 0.0386 (6)
C17 1.2141 (4) −0.3342 (3) 1.41096 (13) 0.0638 (8)
C22 0.8154 (3) 0.5528 (3) 1.06823 (12) 0.0474 (6)
H22 0.8955 0.5673 1.0514 0.057*
C24 0.5695 (4) 0.7637 (4) 1.14423 (19) 0.0853 (11)
C19 0.5774 (3) 0.5122 (3) 1.11873 (15) 0.0558 (7)
H19 0.4980 0.4981 1.1361 0.067*
C7 0.9447 (3) 0.0823 (3) 1.19189 (11) 0.0503 (7)
H7 0.9568 0.0599 1.2352 0.060*
C15 1.0462 (3) −0.3172 (3) 1.30882 (13) 0.0585 (8)
H15 0.9844 −0.3756 1.3250 0.070*
C1 1.1545 (3) −0.2842 (3) 1.01528 (11) 0.0390 (6)
C2 1.2155 (3) −0.3853 (3) 1.06340 (12) 0.0498 (7)
H2 1.2628 −0.4678 1.0567 0.060*
C3 1.1911 (3) −0.3379 (3) 1.11993 (12) 0.0500 (7)
H3 1.2191 −0.3810 1.1597 0.060*
N4 0.5198 (5) 0.8532 (4) 1.1673 (2) 0.1405 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0588 (3) 0.0366 (3) 0.0254 (2) 0.01046 (19) 0.01037 (17) 0.00220 (16)
N2 0.0477 (12) 0.0378 (11) 0.0285 (10) 0.0083 (10) 0.0098 (9) 0.0020 (9)
C5 0.0476 (14) 0.0389 (14) 0.0275 (12) 0.0001 (11) 0.0061 (10) 0.0028 (10)
C10 0.0418 (13) 0.0395 (14) 0.0324 (12) 0.0046 (11) 0.0075 (10) −0.0015 (10)
N1 0.0479 (12) 0.0367 (11) 0.0263 (9) 0.0073 (9) 0.0070 (8) −0.0001 (8)
C4 0.0497 (14) 0.0358 (13) 0.0297 (12) 0.0037 (11) 0.0048 (10) 0.0021 (10)
C16 0.0678 (19) 0.0610 (18) 0.0364 (14) −0.0128 (15) −0.0002 (13) 0.0056 (13)
C13 0.0562 (17) 0.076 (2) 0.0393 (15) 0.0041 (16) −0.0047 (13) 0.0030 (14)
C9 0.0471 (14) 0.0415 (14) 0.0319 (12) 0.0050 (11) 0.0097 (10) −0.0008 (10)
C14 0.0720 (19) 0.0447 (15) 0.0280 (12) 0.0195 (14) 0.0063 (13) 0.0003 (11)
C18 0.0547 (16) 0.0402 (15) 0.0610 (17) 0.0013 (13) 0.0195 (13) −0.0009 (13)
C11 0.0523 (15) 0.0365 (13) 0.0277 (12) 0.0063 (11) 0.0068 (11) 0.0001 (10)
N3 0.129 (3) 0.088 (2) 0.0374 (14) 0.0310 (19) 0.0062 (15) 0.0121 (14)
C20 0.0636 (18) 0.0475 (17) 0.0531 (17) 0.0133 (14) 0.0152 (14) −0.0054 (13)
C8 0.0727 (18) 0.0519 (17) 0.0327 (13) 0.0172 (14) 0.0168 (13) −0.0011 (12)
C12 0.0564 (17) 0.0639 (19) 0.0394 (14) −0.0039 (14) 0.0075 (13) 0.0074 (13)
C23 0.0472 (14) 0.0391 (15) 0.0315 (12) 0.0068 (11) 0.0049 (10) −0.0009 (11)
C21 0.075 (2) 0.0362 (15) 0.0485 (16) −0.0011 (14) 0.0061 (14) −0.0061 (12)
C6 0.0490 (14) 0.0399 (14) 0.0270 (11) 0.0027 (11) 0.0076 (10) 0.0011 (10)
C17 0.092 (2) 0.0591 (19) 0.0392 (16) 0.0252 (17) 0.0088 (15) 0.0042 (14)
C22 0.0531 (16) 0.0479 (15) 0.0417 (14) 0.0013 (13) 0.0102 (12) −0.0025 (12)
C24 0.105 (3) 0.050 (2) 0.111 (3) 0.0098 (19) 0.047 (2) −0.013 (2)
C19 0.0550 (17) 0.0512 (18) 0.0669 (19) 0.0081 (14) 0.0254 (14) −0.0049 (14)
C7 0.0736 (19) 0.0507 (17) 0.0288 (13) 0.0152 (14) 0.0149 (12) 0.0045 (12)
C15 0.085 (2) 0.0498 (17) 0.0425 (15) −0.0079 (16) 0.0159 (15) 0.0093 (13)
C1 0.0441 (14) 0.0393 (14) 0.0330 (12) 0.0067 (11) 0.0061 (11) 0.0006 (10)
C2 0.0650 (18) 0.0457 (15) 0.0378 (14) 0.0208 (13) 0.0077 (12) 0.0026 (12)
C3 0.0685 (18) 0.0485 (16) 0.0310 (13) 0.0172 (14) 0.0049 (12) 0.0081 (11)
N4 0.181 (4) 0.070 (2) 0.197 (4) 0.024 (3) 0.101 (3) −0.036 (3)

Geometric parameters (Å, °)

Zn1—N1i 2.0391 (19) C18—C19 1.372 (4)
Zn1—N1 2.0391 (19) C18—C23 1.396 (4)
Zn1—N2 2.0546 (18) C18—H18 0.9300
Zn1—N2i 2.0546 (18) C11—C12 1.377 (4)
Zn1—N3ii 2.675 (2) N3—C17 1.132 (3)
Zn1—N3iii 2.675 (2) C20—C19 1.372 (4)
N2—C9 1.369 (3) C20—C21 1.381 (4)
N2—C6 1.370 (3) C20—C24 1.450 (4)
C5—C6 1.396 (3) C8—C7 1.339 (4)
C5—C4 1.409 (3) C8—H8 0.9300
C5—C11 1.501 (3) C12—H12 0.9300
C10—C9 1.406 (3) C23—C22 1.384 (4)
C10—C1i 1.406 (3) C21—C22 1.387 (4)
C10—C23 1.490 (3) C21—H21 0.9300
N1—C4 1.368 (3) C6—C7 1.435 (3)
N1—C1 1.368 (3) C22—H22 0.9300
C4—C3 1.434 (3) C24—N4 1.134 (4)
C16—C11 1.379 (4) C19—H19 0.9300
C16—C15 1.390 (4) C7—H7 0.9300
C16—H16 0.9300 C15—H15 0.9300
C13—C14 1.363 (4) C1—C10i 1.406 (3)
C13—C12 1.382 (4) C1—C2 1.441 (3)
C13—H13 0.9300 C2—C3 1.348 (3)
C9—C8 1.446 (3) C2—H2 0.9300
C14—C15 1.383 (4) C3—H3 0.9300
C14—C17 1.449 (4)
N1i—Zn1—N1 180.000 (1) C19—C20—C24 119.7 (3)
N1i—Zn1—N2 89.67 (7) C21—C20—C24 119.7 (3)
N1—Zn1—N2 90.33 (7) C7—C8—C9 107.5 (2)
N1i—Zn1—N2i 90.33 (7) C7—C8—H8 126.3
N1—Zn1—N2i 89.67 (7) C9—C8—H8 126.3
N2—Zn1—N2i 180.000 (1) C11—C12—C13 121.0 (3)
C9—N2—C6 106.99 (18) C11—C12—H12 119.5
C9—N2—Zn1 126.80 (15) C13—C12—H12 119.5
C6—N2—Zn1 126.09 (16) C22—C23—C18 118.1 (2)
C6—C5—C4 125.9 (2) C22—C23—C10 121.7 (2)
C6—C5—C11 117.6 (2) C18—C23—C10 120.2 (2)
C4—C5—C11 116.5 (2) C20—C21—C22 119.6 (3)
C9—C10—C1i 124.8 (2) C20—C21—H21 120.2
C9—C10—C23 117.4 (2) C22—C21—H21 120.2
C1i—C10—C23 117.8 (2) N2—C6—C5 125.5 (2)
C4—N1—C1 106.49 (18) N2—C6—C7 109.4 (2)
C4—N1—Zn1 126.31 (16) C5—C6—C7 125.1 (2)
C1—N1—Zn1 126.96 (15) N3—C17—C14 176.4 (4)
N1—C4—C5 125.5 (2) C23—C22—C21 120.7 (3)
N1—C4—C3 109.9 (2) C23—C22—H22 119.6
C5—C4—C3 124.6 (2) C21—C22—H22 119.6
C11—C16—C15 121.2 (3) N4—C24—C20 177.9 (4)
C11—C16—H16 119.4 C20—C19—C18 119.6 (3)
C15—C16—H16 119.4 C20—C19—H19 120.2
C14—C13—C12 120.0 (3) C18—C19—H19 120.2
C14—C13—H13 120.0 C8—C7—C6 107.4 (2)
C12—C13—H13 120.0 C8—C7—H7 126.3
N2—C9—C10 125.7 (2) C6—C7—H7 126.3
N2—C9—C8 108.8 (2) C14—C15—C16 118.9 (3)
C10—C9—C8 125.4 (2) C14—C15—H15 120.6
C13—C14—C15 120.5 (2) C16—C15—H15 120.6
C13—C14—C17 119.1 (3) N1—C1—C10i 126.1 (2)
C15—C14—C17 120.4 (3) N1—C1—C2 109.5 (2)
C19—C18—C23 121.4 (3) C10i—C1—C2 124.4 (2)
C19—C18—H18 119.3 C3—C2—C1 107.1 (2)
C23—C18—H18 119.3 C3—C2—H2 126.5
C12—C11—C16 118.5 (2) C1—C2—H2 126.5
C12—C11—C5 120.5 (2) C2—C3—C4 107.1 (2)
C16—C11—C5 121.0 (2) C2—C3—H3 126.5
C19—C20—C21 120.5 (3) C4—C3—H3 126.5

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+5/2, y+1/2, −z+5/2; (iii) x−1/2, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2269).

References

  1. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Y., Fields, K. B. & Zhang, X. P. (2004). J. Am. Chem. Soc. 126, 14718–14719. [DOI] [PubMed]
  4. Jiang, J. & Ng, D. K. P. (2009). Acc. Chem. Res. 42, 79–88. [DOI] [PubMed]
  5. Kumar, R. K., Balasubramanian, S. & Goldberg, I. (1998). Inorg. Chem. 37, 541–552. [DOI] [PubMed]
  6. Muniappan, S., Lipstman, S. & Goldberg, I. (2006). Acta Cryst. C62, m477–m479. [DOI] [PubMed]
  7. Sheldrick, G. M. (1995). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681100849X/jh2269sup1.cif

e-67-0m431-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100849X/jh2269Isup2.hkl

e-67-0m431-Isup2.hkl (162.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES