Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o810. doi: 10.1107/S1600536811007653

2-Chloro-N′-(2-hy­droxy-3,5-diiodo­benzyl­idene)benzohydrazide

Fei Wang a, Da-Yong Liu b, Hai-Bo Wang a, Xian-Sheng Meng a,*, Ting-Guo Kang a,*
PMCID: PMC3099825  PMID: 21754096

Abstract

In the title compound, C14H9ClI2N2O2, the dihedral angle between the benzene rings is 65.9 (2)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. The mol­ecule has an E conformation about the C=N bond. In the crystal, mol­ecules are linked into C(4) chains propagating in [001] by N—H⋯O hydrogen bonds.

Related literature

For background to hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006); Khattab (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For reference bond-length values, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Yang (2008); Ma et al. (2008); Diao et al. (2008a ,b ); Ejsmont et al. (2008).graphic file with name e-67-0o810-scheme1.jpg

Experimental

Crystal data

  • C14H9ClI2N2O2

  • M r = 526.48

  • Monoclinic, Inline graphic

  • a = 14.311 (3) Å

  • b = 11.469 (2) Å

  • c = 9.736 (2) Å

  • β = 90.032 (2)°

  • V = 1598.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.11 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.525, T max = 0.542

  • 7381 measured reflections

  • 3383 independent reflections

  • 1747 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.112

  • S = 0.95

  • 3383 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007653/hb5809sup1.cif

e-67-0o810-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007653/hb5809Isup2.hkl

e-67-0o810-Isup2.hkl (165.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.556 (8) 146
N2—H2⋯O2i 0.91 (4) 1.88 (2) 2.768 (8) 168 (8)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported in part by a grant from the Department of Education of Liaoning, China (L2010357).

supplementary crystallographic information

Comment

Hydrazones have been attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab et al., 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Yang, 2008; Ma et al., 2008; Diao et al., 2008a,b; Ejsmont et al., 2008). In this paper, the title new hydrazone compound is reported.

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are normal (Allen et al., 1987). The dihedral angle between the two benzene rings is 65.9 (2)°. The molecule of the compound displays an E geometry about the C═N bond. The molecules are linked into chains along the c axis by intermolecular N—H···O hydrogen bonds (Fig. 2 and Table 1).

Experimental

2-Hydroxy-3,5-diiodobenzaldehyde (1.0 mmol, 373.9 mg) was dissolved in methanol (50 ml), then 2-chlorobenzohydrazide (1.0 mmol, 170.6 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 2 h. After the solution had cooled to room temperature colourless powder crystals appeared. The powder crystals were filtered and washed with methanol for three times. Recrystallization from absolute methanol yielded colourless block-shaped single crystals of the title compound.

Refinement

H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions with O—H = 0.82 Å, C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. Intramolecular O—H···N hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

Molecular packing as viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9ClI2N2O2 F(000) = 984
Mr = 526.48 Dx = 2.188 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 989 reflections
a = 14.311 (3) Å θ = 2.5–24.5°
b = 11.469 (2) Å µ = 4.11 mm1
c = 9.736 (2) Å T = 298 K
β = 90.032 (2)° Block, colourless
V = 1598.0 (5) Å3 0.18 × 0.17 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3383 independent reflections
Radiation source: fine-focus sealed tube 1747 reflections with I > 2σ(I)
graphite Rint = 0.069
ω scans θmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −18→13
Tmin = 0.525, Tmax = 0.542 k = −14→9
7381 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3
3383 reflections (Δ/σ)max < 0.001
194 parameters Δρmax = 0.93 e Å3
1 restraint Δρmin = −0.80 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.22657 (4) 0.87447 (6) −0.18612 (7) 0.0664 (2)
I2 −0.12679 (4) 0.97420 (6) 0.39763 (7) 0.0689 (2)
Cl1 0.39839 (19) 0.5079 (3) 0.3068 (3) 0.0908 (9)
N1 0.1820 (4) 0.8044 (6) 0.1129 (6) 0.0385 (16)
N2 0.2702 (4) 0.7650 (6) 0.0825 (6) 0.0402 (17)
O1 0.0634 (3) 0.8886 (5) 0.2821 (5) 0.0482 (14)
H1 0.1148 0.8671 0.2551 0.072*
O2 0.3053 (4) 0.7548 (6) 0.3039 (6) 0.077 (2)
C1 0.0291 (5) 0.8487 (6) 0.0472 (8) 0.0343 (19)
C2 0.0025 (5) 0.8833 (6) 0.1793 (8) 0.0367 (19)
C3 −0.0897 (5) 0.9172 (7) 0.2027 (8) 0.043 (2)
C4 −0.1538 (5) 0.9133 (7) 0.0998 (10) 0.050 (2)
H4 −0.2153 0.9350 0.1168 0.060*
C5 −0.1283 (5) 0.8778 (8) −0.0279 (9) 0.051 (2)
C6 −0.0383 (5) 0.8446 (6) −0.0562 (8) 0.044 (2)
H6 −0.0222 0.8196 −0.1439 0.053*
C7 0.1229 (5) 0.8119 (7) 0.0171 (8) 0.0378 (19)
H7 0.1400 0.7937 −0.0725 0.045*
C8 0.3274 (5) 0.7392 (8) 0.1856 (8) 0.046 (2)
C9 0.4215 (5) 0.6948 (8) 0.1424 (8) 0.044 (2)
C10 0.4584 (6) 0.5931 (8) 0.1939 (9) 0.055 (2)
C11 0.5447 (7) 0.5530 (10) 0.1535 (11) 0.074 (3)
H11 0.5699 0.4843 0.1882 0.088*
C12 0.5921 (7) 0.6211 (15) 0.0577 (14) 0.102 (6)
H12 0.6510 0.5968 0.0293 0.122*
C13 0.5576 (8) 0.7187 (12) 0.0048 (12) 0.090 (4)
H13 0.5915 0.7607 −0.0599 0.108*
C14 0.4710 (6) 0.7572 (9) 0.0471 (9) 0.068 (3)
H14 0.4462 0.8255 0.0109 0.082*
H2 0.290 (5) 0.755 (8) −0.005 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0465 (4) 0.0791 (5) 0.0737 (5) −0.0086 (3) −0.0190 (3) 0.0115 (4)
I2 0.0617 (4) 0.0786 (5) 0.0663 (5) 0.0136 (3) 0.0127 (3) −0.0186 (4)
Cl1 0.0839 (19) 0.089 (2) 0.099 (2) −0.0011 (15) −0.0081 (16) 0.0317 (18)
N1 0.028 (4) 0.052 (5) 0.036 (4) 0.004 (3) −0.002 (3) −0.002 (3)
N2 0.034 (4) 0.063 (5) 0.024 (4) 0.008 (3) 0.004 (3) −0.005 (4)
O1 0.051 (3) 0.058 (4) 0.036 (3) 0.008 (3) 0.000 (3) −0.002 (3)
O2 0.068 (4) 0.143 (7) 0.020 (3) 0.042 (4) 0.003 (3) 0.003 (4)
C1 0.041 (5) 0.031 (5) 0.031 (5) −0.001 (3) 0.002 (3) 0.008 (4)
C2 0.035 (4) 0.035 (5) 0.040 (5) −0.011 (4) 0.004 (3) 0.008 (4)
C3 0.051 (5) 0.034 (5) 0.044 (6) −0.007 (4) 0.010 (4) 0.002 (4)
C4 0.034 (5) 0.048 (6) 0.067 (7) 0.000 (4) 0.004 (4) 0.006 (5)
C5 0.037 (5) 0.061 (6) 0.055 (6) 0.000 (4) −0.011 (4) 0.014 (5)
C6 0.049 (5) 0.038 (5) 0.045 (5) −0.003 (4) −0.006 (4) −0.008 (4)
C7 0.051 (5) 0.038 (5) 0.025 (5) 0.002 (4) 0.003 (4) 0.009 (4)
C8 0.047 (5) 0.070 (7) 0.020 (5) 0.007 (4) 0.002 (4) 0.000 (4)
C9 0.030 (4) 0.072 (7) 0.029 (5) 0.000 (4) −0.002 (3) −0.008 (5)
C10 0.048 (6) 0.066 (7) 0.052 (6) −0.001 (5) −0.007 (4) −0.003 (5)
C11 0.054 (7) 0.100 (10) 0.067 (8) 0.026 (6) −0.018 (5) −0.025 (7)
C12 0.039 (6) 0.182 (16) 0.083 (10) 0.015 (8) −0.013 (6) −0.079 (11)
C13 0.066 (8) 0.141 (13) 0.063 (8) −0.034 (8) 0.029 (6) −0.016 (8)
C14 0.050 (6) 0.112 (9) 0.043 (6) −0.006 (6) 0.010 (4) 0.007 (6)

Geometric parameters (Å, °)

I1—C5 2.086 (7) C4—H4 0.9300
I2—C3 2.076 (8) C5—C6 1.372 (10)
Cl1—C10 1.703 (9) C6—H6 0.9300
N1—C7 1.261 (8) C7—H7 0.9300
N1—N2 1.373 (7) C8—C9 1.501 (10)
N2—C8 1.328 (9) C9—C14 1.369 (11)
N2—H2 0.91 (4) C9—C10 1.374 (12)
O1—C2 1.328 (8) C10—C11 1.376 (11)
O1—H1 0.8200 C11—C12 1.393 (16)
O2—C8 1.208 (9) C11—H11 0.9300
C1—C6 1.395 (10) C12—C13 1.328 (16)
C1—C2 1.398 (10) C12—H12 0.9300
C1—C7 1.438 (9) C13—C14 1.379 (13)
C2—C3 1.396 (10) C13—H13 0.9300
C3—C4 1.358 (10) C14—H14 0.9300
C4—C5 1.358 (11)
C7—N1—N2 118.6 (6) N1—C7—H7 120.2
C8—N2—N1 118.5 (6) C1—C7—H7 120.2
C8—N2—H2 119 (5) O2—C8—N2 121.8 (7)
N1—N2—H2 122 (5) O2—C8—C9 123.5 (7)
C2—O1—H1 109.5 N2—C8—C9 114.6 (7)
C6—C1—C2 119.0 (7) C14—C9—C10 119.5 (8)
C6—C1—C7 119.2 (7) C14—C9—C8 118.5 (8)
C2—C1—C7 121.7 (6) C10—C9—C8 122.0 (8)
O1—C2—C3 118.9 (7) C9—C10—C11 121.6 (9)
O1—C2—C1 121.8 (7) C9—C10—Cl1 121.9 (7)
C3—C2—C1 119.2 (7) C11—C10—Cl1 116.5 (8)
C4—C3—C2 120.5 (8) C10—C11—C12 116.2 (10)
C4—C3—I2 120.8 (6) C10—C11—H11 121.9
C2—C3—I2 118.6 (6) C12—C11—H11 121.9
C5—C4—C3 120.3 (8) C13—C12—C11 123.5 (12)
C5—C4—H4 119.9 C13—C12—H12 118.3
C3—C4—H4 119.9 C11—C12—H12 118.3
C4—C5—C6 121.3 (7) C12—C13—C14 119.2 (12)
C4—C5—I1 120.0 (6) C12—C13—H13 120.4
C6—C5—I1 118.7 (7) C14—C13—H13 120.4
C5—C6—C1 119.7 (8) C9—C14—C13 120.0 (10)
C5—C6—H6 120.2 C9—C14—H14 120.0
C1—C6—H6 120.2 C13—C14—H14 120.0
N1—C7—C1 119.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.83 2.556 (8) 146
N2—H2···O2i 0.91 (4) 1.88 (2) 2.768 (8) 168 (8)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5809).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470. [DOI] [PMC free article] [PubMed]
  5. Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101. [DOI] [PMC free article] [PubMed]
  6. Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. [DOI] [PMC free article] [PubMed]
  8. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. [DOI] [PubMed]
  9. Khattab, S. N. (2005). Molecules 10, 1218–1228. [DOI] [PMC free article] [PubMed]
  10. Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359. [DOI] [PubMed]
  11. Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210. [DOI] [PMC free article] [PubMed]
  12. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  13. Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Yang, D.-S. (2008). Acta Cryst. E64, o1759. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007653/hb5809sup1.cif

e-67-0o810-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007653/hb5809Isup2.hkl

e-67-0o810-Isup2.hkl (165.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES