Abstract
In the crystal structure of the title compound, C4H6N3
+·HSO4
−, hydrogen sulfate anions self-assemble through O—H⋯O hydrogen bonds, forming chains along the b axis, while the cations form centrosymmetric pairs via N—H⋯N hydrogen bonds. The 2-aminopyrimidinium pairs are linked to the sulfate anions via N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (10
). In addition, weak intermolecular C—H⋯O contacts generate a three-dimensional network.
Related literature
For the biological properties of pyrimidines, see: Rabie et al. (2007 ▶); Rival et al. (1991 ▶). For applications of aminopyrimidines, see: Rospenk & Koll (2007 ▶). For aminopyrimidine salts, see: Hemamalini et al. (2005 ▶); Childs et al. (2007 ▶); Lee et al. (2003 ▶); Ye et al. (2002 ▶). For sulfate salts with organic cations, see: Xu et al. (2009a
▶,b
▶).
Experimental
Crystal data
C4H6N3 +·HSO4 −
M r = 193.19
Monoclinic,
a = 8.388 (2) Å
b = 5.208 (3) Å
c = 18.468 (4) Å
β = 112.84 (2)°
V = 743.6 (5) Å3
Z = 4
Ag Kα radiation
λ = 0.56087 Å
μ = 0.22 mm−1
T = 293 K
0.25 × 0.21 × 0.15 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
3738 measured reflections
3647 independent reflections
2520 reflections with I > 2σ(I)
R int = 0.015
2 standard reflections every 120 min intensity decay: 1%
Refinement
R[F 2 > 2σ(F 2)] = 0.056
wR(F 2) = 0.159
S = 1.07
3647 reflections
110 parameters
H-atom parameters constrained
Δρmax = 0.82 e Å−3
Δρmin = −0.71 e Å−3
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 ▶); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995) ▶; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶) and DIAMOND (Brandenburg & Putz, 2005 ▶); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011123/lh5222sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011123/lh5222Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯O4i | 0.82 | 1.79 | 2.6100 (19) | 174 |
| N1—H1B⋯O1ii | 0.86 | 2.38 | 3.140 (2) | 148 |
| N1—H1B⋯O4 | 0.86 | 2.58 | 3.155 (2) | 125 |
| N1—H1A⋯N3iii | 0.86 | 2.16 | 3.017 (2) | 172 |
| N2—H2⋯O3 | 0.86 | 1.91 | 2.756 (2) | 168 |
| C2—H2A⋯O3iv | 0.93 | 2.40 | 3.294 (2) | 160 |
| C3—H3⋯O2v | 0.93 | 2.51 | 3.262 (3) | 138 |
| C4—H4⋯O4vi | 0.93 | 2.53 | 3.316 (2) | 142 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
supplementary crystallographic information
Comment
Substantial attention has recently been focused on pyrimidine and its derivatives for their interesting properties as fungicides, vermicides, insecticides (Rabie et al., 2007), antifungal agents and antiviral agents (Rival et al., 1991). In particular, aminopyrimidines have been recognized as interesting nucleic bases, like cytosine, adenine and guanine which are responsible for molecular recognition and replication of DNA, through the formation and breakage of N—H···N hydrogen bonds (Rospenk & Koll, 2007). In continuation of our research on materials which could have interesting applications we report herein the synthesis and crystal structure of the title compound (I).
The asymmetric unit of the title compound (Fig. 1) consists of one hydrogen sulfate anion and one protonated 2-aminopyrimidine. The crystal packing of (I) is characterized by infinite chains built by HSO4- anions extending along the b-direction. These chains are interconnected by cationic moieties via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) resulting in three-dimensional supra-molecular structure (Fig. 2).
As can be seen in table 1, the O1—H1···O4i hydrogen bond links two adjacent hydrogen sulfate anions generating corrugated chains stacked along c axis (Fig. 2). In the sulfate anion, the S—O bond [1.569 (2) Å] involving the O atom bearing the acid H atom is longer than the other three S—O bonds, which range from 1.429 (1) to 1.459 (1) Å because of the bond multiplicity and the electronic mesomerism as reported previously in the hydrogen sulfate ion (Xu et al., 2009a,b).
With regard to the organic framework, the neighbouring cations of 2-aminopyrimidine linked by the hydrogen bonds N1–H1A···N3 (2 - x, 1 - y, 1 - z) and N3···H1A–N1 (2 - x, 1 - y, 1 - z) form the cyclic dimer of [C4N2H4NH2]2+2. The cationic arrangement in crystal structure of 2-amino-4,6-dimethylpyrimidinium hydrogen sulfate (Hemamalini et al., 2005) is closely related to that seen in the title compound. The dimers of the 2-aminopyrimidinium cations with planar rings (r.m.s. deviation = 0.008 Å) are connected to HSO4- chains by hydrogen bonds N1–H1B···O4, N1–H1B···O1 (x, y + 1, z) and N2–H2···O3 to form a two-dimensional network (Fig. 2) which is linked into a three-dimensional network through weak intermolecular hydrogen bonds. These observations are similar to that of other 2-aminopyrimidinium salts (Childs et al., 2007; Lee et al., 2003; Ye et al., 2002).
Experimental
To a solution of 2-aminopyrimidine (0.19 g, 2 mmol) dissolved in a mixture of water/ethanol (10/5 ml) was added dropwise 2 mmol (0.15 ml) of commercial H2SO4 (98%, Aldrich). The reaction mixture was stirred and left under slowly evaporation at room temperature until formation of large colorless single crystals of the title compound.
Refinement
All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H= 0.86 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)
Figures
Fig. 1.
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.
Fig. 2.
Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted. H bonds are shown as dashed lines.
Crystal data
| C4H6N3+·HSO4− | F(000) = 400 |
| Mr = 193.19 | Dx = 1.726 Mg m−3 |
| Monoclinic, P21/c | Ag Kα radiation, λ = 0.56087 Å |
| Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
| a = 8.388 (2) Å | θ = 9–11° |
| b = 5.208 (3) Å | µ = 0.22 mm−1 |
| c = 18.468 (4) Å | T = 293 K |
| β = 112.84 (2)° | Prism, colorless |
| V = 743.6 (5) Å3 | 0.25 × 0.21 × 0.15 mm |
| Z = 4 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | Rint = 0.015 |
| Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.1° |
| graphite | h = −14→13 |
| non–profiled ω scans | k = −8→0 |
| 3738 measured reflections | l = −30→13 |
| 3647 independent reflections | 2 standard reflections every 120 min |
| 2520 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.159 | H-atom parameters constrained |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0919P)2 + 0.0037P] where P = (Fo2 + 2Fc2)/3 |
| 3647 reflections | (Δ/σ)max < 0.001 |
| 110 parameters | Δρmax = 0.82 e Å−3 |
| 0 restraints | Δρmin = −0.71 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S | 0.67465 (5) | −0.13645 (8) | 0.21545 (2) | 0.02768 (11) | |
| O1 | 0.66596 (17) | −0.4361 (3) | 0.22175 (9) | 0.0400 (3) | |
| H1 | 0.5717 | −0.4774 | 0.2218 | 0.060* | |
| O2 | 0.5491 (2) | −0.0595 (3) | 0.14085 (8) | 0.0515 (4) | |
| O3 | 0.85241 (16) | −0.0898 (3) | 0.22478 (7) | 0.0365 (3) | |
| O4 | 0.64241 (17) | −0.0315 (3) | 0.28174 (8) | 0.0408 (3) | |
| N1 | 0.9071 (2) | 0.3742 (3) | 0.39016 (9) | 0.0430 (4) | |
| H1A | 0.8905 | 0.4952 | 0.4181 | 0.052* | |
| H1B | 0.8390 | 0.3583 | 0.3416 | 0.052* | |
| N2 | 1.06403 (19) | 0.0245 (3) | 0.37781 (8) | 0.0319 (3) | |
| H2 | 0.9966 | 0.0117 | 0.3291 | 0.038* | |
| N3 | 1.1419 (2) | 0.2419 (3) | 0.49787 (8) | 0.0358 (3) | |
| C1 | 1.0366 (2) | 0.2136 (3) | 0.42160 (9) | 0.0295 (3) | |
| C2 | 1.1941 (2) | −0.1444 (3) | 0.40855 (11) | 0.0376 (3) | |
| H2A | 1.2105 | −0.2737 | 0.3774 | 0.045* | |
| C3 | 1.3011 (3) | −0.1248 (4) | 0.48528 (12) | 0.0429 (4) | |
| H3 | 1.3912 | −0.2404 | 0.5085 | 0.051* | |
| C4 | 1.2703 (3) | 0.0753 (4) | 0.52752 (10) | 0.0418 (4) | |
| H4 | 1.3442 | 0.0939 | 0.5799 | 0.050* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S | 0.03166 (18) | 0.02383 (17) | 0.02574 (16) | −0.00177 (13) | 0.00914 (13) | −0.00139 (13) |
| O1 | 0.0418 (7) | 0.0245 (5) | 0.0581 (8) | −0.0021 (5) | 0.0240 (6) | −0.0020 (5) |
| O2 | 0.0539 (9) | 0.0493 (9) | 0.0337 (6) | −0.0035 (7) | −0.0023 (6) | 0.0068 (6) |
| O3 | 0.0380 (6) | 0.0388 (7) | 0.0365 (6) | −0.0084 (5) | 0.0186 (5) | −0.0057 (5) |
| O4 | 0.0423 (7) | 0.0420 (7) | 0.0409 (6) | 0.0016 (5) | 0.0192 (5) | −0.0115 (5) |
| N1 | 0.0456 (8) | 0.0428 (9) | 0.0325 (7) | 0.0091 (7) | 0.0062 (6) | −0.0061 (6) |
| N2 | 0.0408 (7) | 0.0292 (6) | 0.0263 (5) | −0.0040 (5) | 0.0135 (5) | −0.0039 (5) |
| N3 | 0.0420 (7) | 0.0361 (8) | 0.0250 (6) | −0.0001 (6) | 0.0084 (5) | −0.0043 (5) |
| C1 | 0.0361 (7) | 0.0266 (6) | 0.0255 (6) | −0.0042 (6) | 0.0116 (5) | −0.0025 (5) |
| C2 | 0.0461 (9) | 0.0287 (7) | 0.0438 (9) | −0.0005 (7) | 0.0238 (8) | −0.0030 (7) |
| C3 | 0.0450 (9) | 0.0396 (10) | 0.0436 (9) | 0.0093 (8) | 0.0168 (8) | 0.0075 (8) |
| C4 | 0.0439 (9) | 0.0468 (10) | 0.0289 (7) | 0.0016 (8) | 0.0078 (7) | 0.0022 (7) |
Geometric parameters (Å, °)
| S—O2 | 1.4288 (14) | N2—C1 | 1.350 (2) |
| S—O3 | 1.4535 (13) | N2—H2 | 0.8600 |
| S—O4 | 1.4588 (13) | N3—C4 | 1.324 (3) |
| S—O1 | 1.5690 (17) | N3—C1 | 1.349 (2) |
| O1—H1 | 0.8200 | C2—C3 | 1.355 (3) |
| N1—C1 | 1.314 (2) | C2—H2A | 0.9300 |
| N1—H1A | 0.8600 | C3—C4 | 1.385 (3) |
| N1—H1B | 0.8600 | C3—H3 | 0.9300 |
| N2—C2 | 1.343 (2) | C4—H4 | 0.9300 |
| O2—S—O3 | 113.94 (9) | C4—N3—C1 | 117.25 (16) |
| O2—S—O4 | 113.37 (10) | N1—C1—N3 | 119.05 (16) |
| O3—S—O4 | 110.72 (8) | N1—C1—N2 | 120.26 (15) |
| O2—S—O1 | 108.21 (9) | N3—C1—N2 | 120.69 (16) |
| O3—S—O1 | 103.46 (8) | N2—C2—C3 | 119.50 (17) |
| O4—S—O1 | 106.34 (9) | N2—C2—H2A | 120.3 |
| S—O1—H1 | 109.5 | C3—C2—H2A | 120.3 |
| C1—N1—H1A | 120.0 | C2—C3—C4 | 116.90 (18) |
| C1—N1—H1B | 120.0 | C2—C3—H3 | 121.5 |
| H1A—N1—H1B | 120.0 | C4—C3—H3 | 121.5 |
| C2—N2—C1 | 121.60 (15) | N3—C4—C3 | 124.04 (17) |
| C2—N2—H2 | 119.2 | N3—C4—H4 | 118.0 |
| C1—N2—H2 | 119.2 | C3—C4—H4 | 118.0 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O4i | 0.82 | 1.79 | 2.6100 (19) | 174 |
| N1—H1B···O1ii | 0.86 | 2.38 | 3.140 (2) | 148 |
| N1—H1B···O4 | 0.86 | 2.58 | 3.155 (2) | 125 |
| N1—H1A···N3iii | 0.86 | 2.16 | 3.017 (2) | 172 |
| N2—H2···O3 | 0.86 | 1.91 | 2.756 (2) | 168 |
| C2—H2A···O3iv | 0.93 | 2.40 | 3.294 (2) | 160 |
| C3—H3···O2v | 0.93 | 2.51 | 3.262 (3) | 138 |
| C4—H4···O4vi | 0.93 | 2.53 | 3.316 (2) | 142 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, −y−1/2, z+1/2; (vi) −x+2, −y, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5222).
References
- Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. [DOI] [PubMed]
- Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97. [DOI] [PubMed]
- Lee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425–1442.
- Rabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6–13.
- Rival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13–18.
- Rospenk, M. & Koll, A. (2007). J. Mol. Struct. 844–845, 232–241.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Xu, Y.-M., Gao, S. & Ng, S. W. (2009a). Acta Cryst. E65, o3146. [DOI] [PMC free article] [PubMed]
- Xu, Y.-M., Gao, S. & Ng, S. W. (2009b). Acta Cryst. E65, o3147. [DOI] [PMC free article] [PubMed]
- Ye, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501–502.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011123/lh5222sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011123/lh5222Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


