Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):o1013. doi: 10.1107/S1600536811011123

2-Amino­pyrimidinium hydrogen sulfate

Adel Elboulali a,*, Samah Toumi Akriche a, Salem S Al-Deyab b, Mohamed Rzaigui a
PMCID: PMC3099826  PMID: 21754030

Abstract

In the crystal structure of the title compound, C4H6N3 +·HSO4 , hydrogen sulfate anions self-assemble through O—H⋯O hydrogen bonds, forming chains along the b axis, while the cations form centrosymmetric pairs via N—H⋯N hydrogen bonds. The 2-amino­pyrimidinium pairs are linked to the sulfate anions via N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (10Inline graphic). In addition, weak inter­molecular C—H⋯O contacts generate a three-dimensional network.

Related literature

For the biological properties of pyrimidines, see: Rabie et al. (2007); Rival et al. (1991). For applications of amino­pyrimidines, see: Rospenk & Koll (2007). For amino­pyrimidine salts, see: Hemamalini et al. (2005); Childs et al. (2007); Lee et al. (2003); Ye et al. (2002). For sulfate salts with organic cations, see: Xu et al. (2009a ,b ).graphic file with name e-67-o1013-scheme1.jpg

Experimental

Crystal data

  • C4H6N3 +·HSO4

  • M r = 193.19

  • Monoclinic, Inline graphic

  • a = 8.388 (2) Å

  • b = 5.208 (3) Å

  • c = 18.468 (4) Å

  • β = 112.84 (2)°

  • V = 743.6 (5) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.15 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 3738 measured reflections

  • 3647 independent reflections

  • 2520 reflections with I > 2σ(I)

  • R int = 0.015

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.159

  • S = 1.07

  • 3647 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011123/lh5222sup1.cif

e-67-o1013-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011123/lh5222Isup2.hkl

e-67-o1013-Isup2.hkl (175.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.79 2.6100 (19) 174
N1—H1B⋯O1ii 0.86 2.38 3.140 (2) 148
N1—H1B⋯O4 0.86 2.58 3.155 (2) 125
N1—H1A⋯N3iii 0.86 2.16 3.017 (2) 172
N2—H2⋯O3 0.86 1.91 2.756 (2) 168
C2—H2A⋯O3iv 0.93 2.40 3.294 (2) 160
C3—H3⋯O2v 0.93 2.51 3.262 (3) 138
C4—H4⋯O4vi 0.93 2.53 3.316 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

Substantial attention has recently been focused on pyrimidine and its derivatives for their interesting properties as fungicides, vermicides, insecticides (Rabie et al., 2007), antifungal agents and antiviral agents (Rival et al., 1991). In particular, aminopyrimidines have been recognized as interesting nucleic bases, like cytosine, adenine and guanine which are responsible for molecular recognition and replication of DNA, through the formation and breakage of N—H···N hydrogen bonds (Rospenk & Koll, 2007). In continuation of our research on materials which could have interesting applications we report herein the synthesis and crystal structure of the title compound (I).

The asymmetric unit of the title compound (Fig. 1) consists of one hydrogen sulfate anion and one protonated 2-aminopyrimidine. The crystal packing of (I) is characterized by infinite chains built by HSO4- anions extending along the b-direction. These chains are interconnected by cationic moieties via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) resulting in three-dimensional supra-molecular structure (Fig. 2).

As can be seen in table 1, the O1—H1···O4i hydrogen bond links two adjacent hydrogen sulfate anions generating corrugated chains stacked along c axis (Fig. 2). In the sulfate anion, the S—O bond [1.569 (2) Å] involving the O atom bearing the acid H atom is longer than the other three S—O bonds, which range from 1.429 (1) to 1.459 (1) Å because of the bond multiplicity and the electronic mesomerism as reported previously in the hydrogen sulfate ion (Xu et al., 2009a,b).

With regard to the organic framework, the neighbouring cations of 2-aminopyrimidine linked by the hydrogen bonds N1–H1A···N3 (2 - x, 1 - y, 1 - z) and N3···H1A–N1 (2 - x, 1 - y, 1 - z) form the cyclic dimer of [C4N2H4NH2]2+2. The cationic arrangement in crystal structure of 2-amino-4,6-dimethylpyrimidinium hydrogen sulfate (Hemamalini et al., 2005) is closely related to that seen in the title compound. The dimers of the 2-aminopyrimidinium cations with planar rings (r.m.s. deviation = 0.008 Å) are connected to HSO4- chains by hydrogen bonds N1–H1B···O4, N1–H1B···O1 (x, y + 1, z) and N2–H2···O3 to form a two-dimensional network (Fig. 2) which is linked into a three-dimensional network through weak intermolecular hydrogen bonds. These observations are similar to that of other 2-aminopyrimidinium salts (Childs et al., 2007; Lee et al., 2003; Ye et al., 2002).

Experimental

To a solution of 2-aminopyrimidine (0.19 g, 2 mmol) dissolved in a mixture of water/ethanol (10/5 ml) was added dropwise 2 mmol (0.15 ml) of commercial H2SO4 (98%, Aldrich). The reaction mixture was stirred and left under slowly evaporation at room temperature until formation of large colorless single crystals of the title compound.

Refinement

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H= 0.86 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.

Fig. 2.

Fig. 2.

Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted. H bonds are shown as dashed lines.

Crystal data

C4H6N3+·HSO4 F(000) = 400
Mr = 193.19 Dx = 1.726 Mg m3
Monoclinic, P21/c Ag Kα radiation, λ = 0.56087 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.388 (2) Å θ = 9–11°
b = 5.208 (3) Å µ = 0.22 mm1
c = 18.468 (4) Å T = 293 K
β = 112.84 (2)° Prism, colorless
V = 743.6 (5) Å3 0.25 × 0.21 × 0.15 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.015
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.1°
graphite h = −14→13
non–profiled ω scans k = −8→0
3738 measured reflections l = −30→13
3647 independent reflections 2 standard reflections every 120 min
2520 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.0037P] where P = (Fo2 + 2Fc2)/3
3647 reflections (Δ/σ)max < 0.001
110 parameters Δρmax = 0.82 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.67465 (5) −0.13645 (8) 0.21545 (2) 0.02768 (11)
O1 0.66596 (17) −0.4361 (3) 0.22175 (9) 0.0400 (3)
H1 0.5717 −0.4774 0.2218 0.060*
O2 0.5491 (2) −0.0595 (3) 0.14085 (8) 0.0515 (4)
O3 0.85241 (16) −0.0898 (3) 0.22478 (7) 0.0365 (3)
O4 0.64241 (17) −0.0315 (3) 0.28174 (8) 0.0408 (3)
N1 0.9071 (2) 0.3742 (3) 0.39016 (9) 0.0430 (4)
H1A 0.8905 0.4952 0.4181 0.052*
H1B 0.8390 0.3583 0.3416 0.052*
N2 1.06403 (19) 0.0245 (3) 0.37781 (8) 0.0319 (3)
H2 0.9966 0.0117 0.3291 0.038*
N3 1.1419 (2) 0.2419 (3) 0.49787 (8) 0.0358 (3)
C1 1.0366 (2) 0.2136 (3) 0.42160 (9) 0.0295 (3)
C2 1.1941 (2) −0.1444 (3) 0.40855 (11) 0.0376 (3)
H2A 1.2105 −0.2737 0.3774 0.045*
C3 1.3011 (3) −0.1248 (4) 0.48528 (12) 0.0429 (4)
H3 1.3912 −0.2404 0.5085 0.051*
C4 1.2703 (3) 0.0753 (4) 0.52752 (10) 0.0418 (4)
H4 1.3442 0.0939 0.5799 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.03166 (18) 0.02383 (17) 0.02574 (16) −0.00177 (13) 0.00914 (13) −0.00139 (13)
O1 0.0418 (7) 0.0245 (5) 0.0581 (8) −0.0021 (5) 0.0240 (6) −0.0020 (5)
O2 0.0539 (9) 0.0493 (9) 0.0337 (6) −0.0035 (7) −0.0023 (6) 0.0068 (6)
O3 0.0380 (6) 0.0388 (7) 0.0365 (6) −0.0084 (5) 0.0186 (5) −0.0057 (5)
O4 0.0423 (7) 0.0420 (7) 0.0409 (6) 0.0016 (5) 0.0192 (5) −0.0115 (5)
N1 0.0456 (8) 0.0428 (9) 0.0325 (7) 0.0091 (7) 0.0062 (6) −0.0061 (6)
N2 0.0408 (7) 0.0292 (6) 0.0263 (5) −0.0040 (5) 0.0135 (5) −0.0039 (5)
N3 0.0420 (7) 0.0361 (8) 0.0250 (6) −0.0001 (6) 0.0084 (5) −0.0043 (5)
C1 0.0361 (7) 0.0266 (6) 0.0255 (6) −0.0042 (6) 0.0116 (5) −0.0025 (5)
C2 0.0461 (9) 0.0287 (7) 0.0438 (9) −0.0005 (7) 0.0238 (8) −0.0030 (7)
C3 0.0450 (9) 0.0396 (10) 0.0436 (9) 0.0093 (8) 0.0168 (8) 0.0075 (8)
C4 0.0439 (9) 0.0468 (10) 0.0289 (7) 0.0016 (8) 0.0078 (7) 0.0022 (7)

Geometric parameters (Å, °)

S—O2 1.4288 (14) N2—C1 1.350 (2)
S—O3 1.4535 (13) N2—H2 0.8600
S—O4 1.4588 (13) N3—C4 1.324 (3)
S—O1 1.5690 (17) N3—C1 1.349 (2)
O1—H1 0.8200 C2—C3 1.355 (3)
N1—C1 1.314 (2) C2—H2A 0.9300
N1—H1A 0.8600 C3—C4 1.385 (3)
N1—H1B 0.8600 C3—H3 0.9300
N2—C2 1.343 (2) C4—H4 0.9300
O2—S—O3 113.94 (9) C4—N3—C1 117.25 (16)
O2—S—O4 113.37 (10) N1—C1—N3 119.05 (16)
O3—S—O4 110.72 (8) N1—C1—N2 120.26 (15)
O2—S—O1 108.21 (9) N3—C1—N2 120.69 (16)
O3—S—O1 103.46 (8) N2—C2—C3 119.50 (17)
O4—S—O1 106.34 (9) N2—C2—H2A 120.3
S—O1—H1 109.5 C3—C2—H2A 120.3
C1—N1—H1A 120.0 C2—C3—C4 116.90 (18)
C1—N1—H1B 120.0 C2—C3—H3 121.5
H1A—N1—H1B 120.0 C4—C3—H3 121.5
C2—N2—C1 121.60 (15) N3—C4—C3 124.04 (17)
C2—N2—H2 119.2 N3—C4—H4 118.0
C1—N2—H2 119.2 C3—C4—H4 118.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4i 0.82 1.79 2.6100 (19) 174
N1—H1B···O1ii 0.86 2.38 3.140 (2) 148
N1—H1B···O4 0.86 2.58 3.155 (2) 125
N1—H1A···N3iii 0.86 2.16 3.017 (2) 172
N2—H2···O3 0.86 1.91 2.756 (2) 168
C2—H2A···O3iv 0.93 2.40 3.294 (2) 160
C3—H3···O2v 0.93 2.51 3.262 (3) 138
C4—H4···O4vi 0.93 2.53 3.316 (2) 142

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, −y−1/2, z+1/2; (vi) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5222).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. [DOI] [PubMed]
  4. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  7. Hemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97. [DOI] [PubMed]
  8. Lee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425–1442.
  9. Rabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6–13.
  10. Rival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13–18.
  11. Rospenk, M. & Koll, A. (2007). J. Mol. Struct. 844–845, 232–241.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Xu, Y.-M., Gao, S. & Ng, S. W. (2009a). Acta Cryst. E65, o3146. [DOI] [PMC free article] [PubMed]
  14. Xu, Y.-M., Gao, S. & Ng, S. W. (2009b). Acta Cryst. E65, o3147. [DOI] [PMC free article] [PubMed]
  15. Ye, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501–502.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011123/lh5222sup1.cif

e-67-o1013-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011123/lh5222Isup2.hkl

e-67-o1013-Isup2.hkl (175.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES