Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 26;67(Pt 4):o987. doi: 10.1107/S1600536811010683

5-Methyl-3-(3-methyl­phen­yl)-7-phenyl-1,2,4-triazolo[4,3-c]pyrimidine

Jasmin Preis a, Dieter Schollmeyer a, Heiner Detert a,*
PMCID: PMC3099827  PMID: 21754244

Abstract

The title compound, C19H16N4, is one of the few known 3,7-diaryl-1,2,4-triazolo[4,3-c]pyrimidines. The triazolopyrimidine unit is essentially planar (r.m.s. deviation = 0.048 Å). The phenyl ring and the heterocyclic core subtend a dihedral angle of only 15.09 (6)°, whereas the m-tolyl ring is twisted by 71.80 (6)° out of the plane of the triazole ring. Two C—H⋯N hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.7045 (8) Å] stabilize the crystal packing.

Related literature

For the synthesis of higher conjugated and annulated heterocyclic π-systems, see: Detert & Schollmeyer (1999); Sugiono & Detert (2001). The acyl­ation of tetra­zoles with chloro­azines and thermal ring transformation leads to triazolo annulated azines, see: Huisgen, Sauer & Seidel (1960); Huisgen, Sturm & Markgraf (1960); Huisgen et al. (1961); Glang et al. (2008). Whereas a broad variety of triazolopyrimidines are known, only two further [1,2,4]triazolo[4,3-c]pyrimidines with a 3,7-diaryl substitution have been reported so far, see: Seada et al. (1992).graphic file with name e-67-0o987-scheme1.jpg

Experimental

Crystal data

  • C19H16N4

  • M r = 300.36

  • Triclinic, Inline graphic

  • a = 6.4270 (4) Å

  • b = 11.1706 (6) Å

  • c = 11.3672 (7) Å

  • α = 79.963 (5)°

  • β = 74.894 (5)°

  • γ = 81.877 (5)°

  • V = 771.88 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 193 K

  • 0.45 × 0.40 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 3207 measured reflections

  • 2924 independent reflections

  • 2573 reflections with I > 2σ(I)

  • R int = 0.088

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.03

  • 2924 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010683/bt5497sup1.cif

e-67-0o987-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010683/bt5497Isup2.hkl

e-67-0o987-Isup2.hkl (143.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N8i 0.95 2.53 3.4597 (17) 166
C23—H23⋯N8i 0.95 2.61 3.5374 (19) 167

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The title compound was synthesized as part of a larger project focusing on the synthesis of higher conjugated and annulated heterocyclic π-systems see Detert & Schollmeyer (1999), Sugiono & Detert (2001). The acylation of tetrazoles followed by thermal ring transformation is a highly efficient route for the synthesis of 1,3,4-oxadiazoles and triazoles (Huisgen, Sauer & Seidel 1960; Huisgen, Sturm & Markgraf, 1960) and can also be applied to 2-chloroazines to yield triazolo-annulated azines. In the crystals of the title compound, the phenyl ring is only slightly turned out of the plane of the heterocyclic core [dihedral angle of 15.09 (6)°], the angle between the mean planes of the core and the m-tolyl ring amounts to 71.80 (6)°. Two molecules of the title compound form a dimer connected via hydrogen bonds C6—H6···N8 (2.53 Å) and C23—H23···N8 (2.61 Å). In the crystal, the dimers are connected viaπ-π-interactions between the rings with a distance of the triazoles (C1—N2, C7—N9) of 3.5404 (8) Å and of the pyrimidines (N2—C7) of 3.7045 (8) Å.

Experimental

The title compound was prepared by adding 2,4,6-collidine (0.54 g, 4.5 mmol) to a solution of 4-chloro-2-methyl-6-phenylpyrimidine (0.61 g, 3 mmol) and 5-(3-methyl- phenyl)tetrazole in xylenes (60 ml) and heating until gas was evolved (363 K). Stirring and heating was continued for 6 h, the solvent removed in vacuo and the residue purified by chromatography (SiO2 /toluene/ethyl acetate = 1 / 1, Rf = 0.28). The title compound was isolated as a yellowish powder with m.p. = 412–413 K. Crystals were obtained by slow evaporation of a solution of the title compound in chloroform/hexanes. All spectrocopic data were in accordance with the assumed structure, but an unique proton-proton coupling over 6 bonds from the pyrimidine-H across the heterocycle to the methyl group was observed.

Refinement

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the packing diagram showing the hydrogen bonds and the π-π-interactions. View along a axis.

Crystal data

C19H16N4 Z = 2
Mr = 300.36 F(000) = 316
Triclinic, P1 Dx = 1.292 Mg m3
Hall symbol: -P 1 Melting point: 412 K
a = 6.4270 (4) Å Cu Kα radiation, λ = 1.54178 Å
b = 11.1706 (6) Å Cell parameters from 25 reflections
c = 11.3672 (7) Å θ = 61–70°
α = 79.963 (5)° µ = 0.63 mm1
β = 74.894 (5)° T = 193 K
γ = 81.877 (5)° Plate, yellow
V = 771.88 (8) Å3 0.45 × 0.40 × 0.25 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.088
Radiation source: rotating anode θmax = 69.9°, θmin = 4.0°
graphite h = −7→0
ω/2θ scans k = −13→13
3207 measured reflections l = −13→13
2924 independent reflections 3 standard reflections every 60 min
2573 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.1681P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2924 reflections Δρmax = 0.25 e Å3
211 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0261 (19)

Special details

Experimental. 1H-NMR (CDCl3): 8.06 (d, 1 H), 8.03 (d 1 H), 7.90 (s, 1H, H-5 pyrimidin), 7.45 (m, 7 H), 2.47 (S, 3 H, CH3), 2.43 (3, 3 H, CH3); 13C-NMR (CDCl3): 151.4, 149.2, 147.1, 146.3, 138.3, 136.1, 131.5, 131.4, 129.9, 128.9, 128.2, 128.0, 127.9, 103.0, 23.6, 21.4; MS (FD): 300.1 (100%, M+), 600.3 (8% M2+), 900.3 (M3+). UV-vis: λmax =393nm (CH2Cl2), fluorescence: λmax =503nm (CH2Cl2).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4291 (2) 0.07105 (12) 0.69733 (11) 0.0279 (3)
N2 0.35695 (17) 0.15861 (10) 0.60994 (9) 0.0269 (3)
C3 0.3949 (2) 0.27979 (12) 0.56152 (12) 0.0295 (3)
N4 0.30230 (19) 0.33877 (10) 0.47760 (10) 0.0322 (3)
C5 0.1646 (2) 0.28265 (12) 0.43301 (12) 0.0291 (3)
C6 0.1357 (2) 0.16223 (12) 0.46841 (12) 0.0300 (3)
H6 0.0468 0.1239 0.4343 0.036*
C7 0.2419 (2) 0.09577 (12) 0.55754 (12) 0.0275 (3)
N8 0.24802 (18) −0.02029 (10) 0.60599 (10) 0.0317 (3)
N9 0.36567 (18) −0.03428 (10) 0.69480 (10) 0.0318 (3)
C10 0.5391 (2) 0.09494 (12) 0.78900 (12) 0.0284 (3)
C11 0.4254 (2) 0.16174 (12) 0.88241 (12) 0.0315 (3)
H11 0.2792 0.1931 0.8849 0.038*
C12 0.5209 (2) 0.18358 (12) 0.97209 (12) 0.0334 (3)
C13 0.7358 (2) 0.13693 (13) 0.96559 (13) 0.0371 (3)
H13 0.8051 0.1516 1.0252 0.045*
C14 0.8494 (2) 0.06977 (15) 0.87386 (14) 0.0404 (4)
H14 0.9956 0.0384 0.8713 0.049*
C15 0.7522 (2) 0.04762 (14) 0.78542 (13) 0.0355 (3)
H15 0.8305 0.0006 0.7230 0.043*
C16 0.3970 (3) 0.25436 (16) 1.07371 (15) 0.0502 (4)
H16A 0.4322 0.3392 1.0529 0.075*
H16B 0.4366 0.2176 1.1507 0.075*
H16C 0.2413 0.2525 1.0838 0.075*
C17 0.5494 (3) 0.33769 (13) 0.60606 (13) 0.0379 (3)
H17A 0.5796 0.4161 0.5543 0.057*
H17B 0.6845 0.2838 0.6018 0.057*
H17C 0.4855 0.3513 0.6915 0.057*
C18 0.0596 (2) 0.36189 (12) 0.34111 (12) 0.0316 (3)
C19 0.1311 (3) 0.47490 (14) 0.28749 (15) 0.0450 (4)
H19 0.2440 0.5028 0.3121 0.054*
C20 0.0393 (3) 0.54751 (16) 0.19826 (17) 0.0555 (5)
H20 0.0908 0.6243 0.1615 0.067*
C21 −0.1258 (3) 0.50869 (16) 0.16287 (16) 0.0522 (4)
H21 −0.1885 0.5584 0.1017 0.063*
C22 −0.2000 (3) 0.39726 (16) 0.21656 (16) 0.0476 (4)
H22 −0.3149 0.3707 0.1926 0.057*
C23 −0.1088 (2) 0.32384 (14) 0.30495 (14) 0.0383 (3)
H23 −0.1610 0.2472 0.3412 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0275 (6) 0.0296 (6) 0.0261 (6) −0.0006 (5) −0.0059 (5) −0.0052 (5)
N2 0.0276 (5) 0.0283 (6) 0.0264 (5) −0.0024 (4) −0.0077 (4) −0.0067 (4)
C3 0.0327 (7) 0.0293 (7) 0.0279 (6) −0.0057 (5) −0.0075 (5) −0.0054 (5)
N4 0.0381 (6) 0.0315 (6) 0.0301 (6) −0.0064 (5) −0.0125 (5) −0.0040 (5)
C5 0.0292 (6) 0.0320 (7) 0.0275 (6) −0.0024 (5) −0.0072 (5) −0.0084 (5)
C6 0.0306 (7) 0.0320 (7) 0.0307 (7) −0.0019 (5) −0.0106 (5) −0.0096 (5)
C7 0.0264 (6) 0.0292 (6) 0.0290 (6) −0.0031 (5) −0.0064 (5) −0.0099 (5)
N8 0.0349 (6) 0.0293 (6) 0.0344 (6) −0.0021 (4) −0.0137 (5) −0.0067 (5)
N9 0.0337 (6) 0.0311 (6) 0.0329 (6) −0.0014 (4) −0.0121 (5) −0.0059 (5)
C10 0.0305 (7) 0.0288 (7) 0.0265 (6) −0.0035 (5) −0.0088 (5) −0.0022 (5)
C11 0.0319 (7) 0.0317 (7) 0.0317 (7) 0.0031 (5) −0.0124 (5) −0.0046 (5)
C12 0.0431 (8) 0.0293 (7) 0.0297 (7) 0.0017 (6) −0.0144 (6) −0.0046 (5)
C13 0.0426 (8) 0.0393 (8) 0.0344 (7) −0.0020 (6) −0.0209 (6) −0.0029 (6)
C14 0.0307 (7) 0.0510 (9) 0.0410 (8) 0.0011 (6) −0.0143 (6) −0.0061 (7)
C15 0.0311 (7) 0.0423 (8) 0.0320 (7) 0.0010 (6) −0.0062 (5) −0.0088 (6)
C16 0.0641 (11) 0.0504 (9) 0.0417 (9) 0.0153 (8) −0.0249 (8) −0.0206 (7)
C17 0.0474 (8) 0.0352 (7) 0.0368 (7) −0.0144 (6) −0.0187 (6) 0.0008 (6)
C18 0.0355 (7) 0.0321 (7) 0.0285 (7) 0.0013 (5) −0.0104 (5) −0.0081 (5)
C19 0.0572 (10) 0.0350 (8) 0.0494 (9) −0.0071 (7) −0.0261 (8) −0.0021 (7)
C20 0.0750 (12) 0.0369 (9) 0.0590 (11) −0.0055 (8) −0.0320 (9) 0.0051 (8)
C21 0.0667 (11) 0.0456 (9) 0.0472 (9) 0.0101 (8) −0.0299 (8) −0.0028 (7)
C22 0.0493 (9) 0.0526 (10) 0.0486 (9) 0.0026 (7) −0.0275 (7) −0.0101 (7)
C23 0.0395 (8) 0.0395 (8) 0.0395 (8) −0.0025 (6) −0.0162 (6) −0.0065 (6)

Geometric parameters (Å, °)

C1—N9 1.3057 (17) C18—C23 1.3939 (19)
C1—N2 1.3899 (16) C19—C20 1.387 (2)
C1—C10 1.4802 (17) C20—C21 1.375 (2)
N2—C7 1.3846 (15) C21—C22 1.379 (3)
N2—C3 1.3995 (17) C22—C23 1.382 (2)
C3—N4 1.2901 (17) C6—H6 0.9500
C3—C17 1.4890 (18) C11—H11 0.9500
N4—C5 1.3909 (16) C13—H13 0.9500
C5—C6 1.3598 (19) C14—H14 0.9500
C5—C18 1.4854 (18) C15—H15 0.9500
C6—C7 1.4136 (18) C16—H16A 0.9800
C7—N8 1.3167 (17) C16—H16B 0.9800
N8—N9 1.3873 (15) C16—H16C 0.9800
C10—C15 1.3896 (19) C17—H17A 0.9800
C10—C11 1.3914 (18) C17—H17B 0.9800
C11—C12 1.3894 (18) C17—H17C 0.9800
C12—C13 1.393 (2) C19—H19 0.9500
C12—C16 1.502 (2) C20—H20 0.9500
C13—C14 1.380 (2) C21—H21 0.9500
C14—C15 1.385 (2) C22—H22 0.9500
C18—C19 1.388 (2) C23—H23 0.9500
N9—C1—N2 109.46 (11) C21—C22—C23 120.60 (15)
N9—C1—C10 124.55 (12) C22—C23—C18 120.25 (14)
N2—C1—C10 125.66 (11) C5—C6—H6 121.00
C7—N2—C1 104.30 (10) C7—C6—H6 121.00
C7—N2—C3 120.16 (11) C10—C11—H11 119.00
C1—N2—C3 135.10 (11) C12—C11—H11 119.00
N4—C3—N2 120.52 (12) C12—C13—H13 119.00
N4—C3—C17 120.83 (12) C14—C13—H13 120.00
N2—C3—C17 118.63 (11) C13—C14—H14 120.00
C3—N4—C5 120.57 (12) C15—C14—H14 120.00
C6—C5—N4 121.74 (12) C10—C15—H15 120.00
C6—C5—C18 122.78 (12) C14—C15—H15 120.00
N4—C5—C18 115.43 (11) C12—C16—H16A 109.00
C5—C6—C7 117.99 (12) C12—C16—H16B 109.00
N8—C7—N2 110.52 (11) C12—C16—H16C 109.00
N8—C7—C6 131.23 (12) H16A—C16—H16B 109.00
N2—C7—C6 118.22 (12) H16A—C16—H16C 109.00
C7—N8—N9 106.71 (10) H16B—C16—H16C 109.00
C1—N9—N8 108.99 (11) C3—C17—H17A 109.00
C15—C10—C11 119.64 (12) C3—C17—H17B 109.00
C15—C10—C1 120.71 (12) C3—C17—H17C 109.00
C11—C10—C1 119.62 (11) H17A—C17—H17B 110.00
C12—C11—C10 121.45 (12) H17A—C17—H17C 109.00
C11—C12—C13 117.93 (13) H17B—C17—H17C 109.00
C11—C12—C16 121.36 (13) C18—C19—H19 120.00
C13—C12—C16 120.71 (13) C20—C19—H19 120.00
C14—C13—C12 121.05 (13) C19—C20—H20 120.00
C13—C14—C15 120.59 (13) C21—C20—H20 120.00
C14—C15—C10 119.32 (13) C20—C21—H21 120.00
C19—C18—C23 118.62 (13) C22—C21—H21 120.00
C19—C18—C5 120.26 (12) C21—C22—H22 120.00
C23—C18—C5 121.10 (13) C23—C22—H22 120.00
C20—C19—C18 120.64 (14) C18—C23—H23 120.00
C21—C20—C19 120.20 (16) C22—C23—H23 120.00
C20—C21—C22 119.68 (15)
N9—C1—N2—C7 1.13 (13) N2—C1—C10—C15 −115.37 (15)
C10—C1—N2—C7 −172.48 (12) N9—C1—C10—C11 −105.68 (15)
N9—C1—N2—C3 −170.93 (13) N2—C1—C10—C11 67.00 (17)
C10—C1—N2—C3 15.5 (2) C15—C10—C11—C12 0.7 (2)
C7—N2—C3—N4 8.25 (18) C1—C10—C11—C12 178.35 (12)
C1—N2—C3—N4 179.34 (13) C10—C11—C12—C13 0.3 (2)
C7—N2—C3—C17 −169.90 (12) C10—C11—C12—C16 −179.23 (13)
C1—N2—C3—C17 1.2 (2) C11—C12—C13—C14 −0.8 (2)
N2—C3—N4—C5 −0.57 (19) C16—C12—C13—C14 178.73 (15)
C17—C3—N4—C5 177.53 (12) C12—C13—C14—C15 0.3 (2)
C3—N4—C5—C6 −5.2 (2) C13—C14—C15—C10 0.7 (2)
C3—N4—C5—C18 177.12 (12) C11—C10—C15—C14 −1.2 (2)
N4—C5—C6—C7 3.13 (19) C1—C10—C15—C14 −178.84 (13)
C18—C5—C6—C7 −179.37 (11) C6—C5—C18—C19 −165.26 (14)
C1—N2—C7—N8 −1.59 (14) N4—C5—C18—C19 12.39 (19)
C3—N2—C7—N8 171.93 (11) C6—C5—C18—C23 13.4 (2)
C1—N2—C7—C6 176.47 (11) N4—C5—C18—C23 −168.96 (12)
C3—N2—C7—C6 −10.01 (17) C23—C18—C19—C20 −1.1 (2)
C5—C6—C7—N8 −178.04 (13) C5—C18—C19—C20 177.61 (15)
C5—C6—C7—N2 4.38 (18) C18—C19—C20—C21 0.7 (3)
N2—C7—N8—N9 1.43 (14) C19—C20—C21—C22 0.1 (3)
C6—C7—N8—N9 −176.29 (13) C20—C21—C22—C23 −0.5 (3)
N2—C1—N9—N8 −0.31 (14) C21—C22—C23—C18 0.1 (2)
C10—C1—N9—N8 173.38 (11) C19—C18—C23—C22 0.7 (2)
C7—N8—N9—C1 −0.69 (14) C5—C18—C23—C22 −178.02 (13)
N9—C1—C10—C15 71.96 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···N8i 0.95 2.53 3.4597 (17) 166
C23—H23···N8i 0.95 2.61 3.5374 (19) 167

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5497).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Detert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999—1004.
  3. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
  4. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  5. Glang, S., Schmitt, V. & Detert, H. (2008). Proc. 36th German Topical Meeting Liq. Cryst. Otto-von-Guericke Universität, Magdeburg,12–14 March , pp. 125–128.
  6. Huisgen, R., Sauer, J. & Seidel, M. (1960). Chem. Ber. 93, 2885–2891.
  7. Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106–2124.
  8. Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562.
  9. Seada, M., Abdel-Halim, A. M., Ibrahim, S. S. & Abdel-Megid, M. (1992). Asian J. Chem. 4, 544–552.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sugiono, E. & Detert, H. (2001). Synthesis, pp. 893–896.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010683/bt5497sup1.cif

e-67-0o987-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010683/bt5497Isup2.hkl

e-67-0o987-Isup2.hkl (143.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES